화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.3, 417-428, August, 2021
0.1MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사
Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed
E-mail:
초록
낮은 반응성으로 인해 복잡한 공정이 필요한 무연탄은 순환유동층 내의 동적 거동을 통해 연소 특성이 고찰되어야 한다. Pilot 규모의 0.1MWth 급 순산소 순환유동층 연소로에서의 무연탄 연소 특성을 고찰하기 위하여 본 연구에서는 전산유체해석 기법을 이용하였다. 순산소 순환유동층 보일러는 연소로(0.15 m l.D., 10 m High), 싸이클론, 재순환부 등으로 구성되었고 동일한 크기의 3D 모델 반응기를 구축하였다.실험에 사용한 무연탄은 평균 입도 1,070 μm, 밀도 2,326 kg/m3이다. 공기 연소에서 순산소 연소로의 연소 환경 변화에 따른 반응기 내부의 기-고 흐름 패턴을 고찰하였다. 이때, 공기 연소와 순산소 연소에서 온도 분포는 비슷한 양상을 보이지만 압력 분포는 순산소 연소에서 더 낮음을 알 수 있었다. 더불어 공기 연소에 비해 순산소 연소에서 더 높은 CO2 농도를 가지므로 이산화탄소 포집이 활발히 이루어질 것을 예상해 볼 수 있다. 결과적으로 본 연구를 통해 무연탄 활용 시 순환유동층 반응기의 최적화된 설계 및 운전에 기여할 수 있음을 확인하였다.
The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 μm and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.
  1. Kunze C, De S, Spliethoff H, Int. J. Greenhouse Gas Control., 5, 1176 (2011)
  2. International Energy Outlook 2016, U. S. Energy Information Administration(2016).
  3. Lee CT, Hashim H, Ho CS, Fan YV, J. Clean Prod., 146, 1 (2017)
  4. Kunze C, Spliethoff H, Appl. Energy, 94, 109 (2012)
  5. Moon JH, Jo SH, Mun TY, Park SJ, Kim JY, Khoi NH, Lee JG, Korean. Chem. Eng. Res., 57, 400 (2019)
  6. Gwak YR, Kim YB, Keel SI, Yun JH, Lee SH, Korean. Chem. Eng. Res., 56, 631 (2018)
  7. Yang CW, Kim YD, Bang BR, Jeong SH, Moon JH, Mun TY, Jo SH, Lee JG, Lee ED, Fuel, 267, 117206 (2020)
  8. Singh RI, Kumar R, Renew. Sust. Energ. Rev., 61, 398 (2016)
  9. Moon JH, Jo SH, Park SJ, Khoi NH, Seo MW, Ra HW, Yoon SJ, Yoon SM, Lee JG, Mun TY, Energy, 166, 183 (2019)
  10. Kang SY, Go ES, Seo SB, KimI HW, Keel SI, Lee SH, Sci. Total Environ., 758, 143704 (2021)
  11. Kim YB, Gwak YR, Keel SI, Yun JH, Lee SH, Chem. Eng. J., 377, 119650 (2019)
  12. Gwak YR, Yun JH, Keel SI, Lee SH, Korean J. Chem. Eng., 37(11), 1878 (2020)
  13. Ngo SI, Lim YI, ChemEngineering., 4, 1 (2020)
  14. Abdi H, Pourmahmoud N, Soltan J, Korean J. Chem. Eng., 37(11), 2041 (2020)
  15. Lee JM, Kim JS, HWAHAK KONGHAK, 38(1), 53 (2000)
  16. Kim SM, Lee JM, Kim JS, Song KK, Energy Eng. J., 9, 250 (2000)
  17. He H, Zhuang H, Adv. Mater. Res., 732, 291 (2013)
  18. Wu Y, Liu D, Ma J, Chen X, Energy Fules, 31, 7952 (2017)
  19. Gu JR, Zhong WQ, Yu AB, Powder Technol., 351, 16 (2019)
  20. Shi XG, Sun RJ, Lan XY, Liu F, Zhang YH, Gao JS, Powder Technol., 271, 16 (2015)
  21. Wang Q, Niemi T, Peltola J, Yang H, Lu J, Wei L, Particuology, 21, 107 (2015)
  22. Wu YY, Peng L, Qin LQ, Wang M, Gao JS, Lan XY, Powder Technol., Blaser P, Thibault S, Sexton J, The 14th International Conference on Fluidization - From Fundamentals to Products, May, Netherlands, 347 (2013)., 323, 269 (2018)
  23. Blaser P, Thibault S, Sexton J, The 14th International Conference on Fluidization - From Fundamentals to Products, May, Netherlands, 347 (2013).
  24. Parker JM, J. Chem. React. Eng., 9, A40 (2011)
  25. O’Hern TJ, Trujilo SM, Torczynski JR, Tortora PR, Oelfke JB, Bhusarapu S, Sandia report, SAND2006-4914(2006).
  26. Weber J, 2019 Barracuda User Conference in Chicago, June, Chicago, Illinois, USA(2019)., Cocco R, 2019 Barracuda User Conference in Chicago, June, Chicago, Illinois, USA(2019).
  27. Weber J, 2019 Barracuda User Conference in Chicago, June, Chicago, Illinois, USA(2019).
  28. Kook JW, 2019 Barracuda User conference in Korea, November, Daejeon, Korea(2019).
  29. Lee ED, 2019 Barracuda User conference in Korea, November, Daejeon, Korea(2019).
  30. Choi HS, 2019 Barracuda User conference in Korea, November, Daejeon, Korea(2019).
  31. Lee DY, 2019 Barracuda User conference in Korea, November, Daejeon, Korea(2019).
  32. Diez LI, Lupianez C, Guedea I, Bolea I, Romeo LM, Fuel Process. Technol., 139, 196 (2015)
  33. Lee JM, Kim DW, Kim JS, Energy, 36(9), 5703 (2011)
  34. Lee JM, Kim DW, Kim JS, Na JG, Lee SH, Energy, 35(7), 2814 (2010)
  35. Kim DW, Lee JM, Kim JS, Kim JJ, Korean J. Chem. Eng., 24(3), 461 (2007)
  36. Riaza J, Gil MV, Alvarez L, Pevida C, Pis JJ, Rubiera F, Energy, 41(1), 429 (2012)
  37. Upadhyay M, Park HC, Hwang JG, Choi HS, Jang HN, Seo YC, Powder Technol., 318, 350 (2017)
  38. Go ES, Kang SY, Seo SB, Kim HW, Lee SH, Korean Chem. Eng. Res., 58, 1 (2020)
  39. Gu J, Shao Y, Zhong W, Chem. Eng. Sci., 211, 115262 (2020)
  40. Gu JR, Liu QW, Zhong WQ, Yu AB, Adv. Powder Technol., 31(5), 2136 (2020)
  41. https://mfix.netl.doe.gov/c3m/.
  42. Upadhyay M, Seo MW, Naren PR, Park JH, Nguyen TDB, Rashid K, Lim HK, Korean J. Chem. Eng., 37(12), 2094 (2020)
  43. Lee SH, Lee JM, Kim JS, Choi JH, Kim SD, HWAHAK KONGHAK, 38, 516 (2000)
  44. Jang HN, Kim JH, Back SK, Sung JH, Yoo HM, Choi HS, Seo YC, Fuel, 170, 92 (2016)
  45. Yang S, Wang S, Wang H, Energy Conv. Manag., 223, 113439 (2020)
  46. Lee JM, Kim JS, Lee EM, J. Korean Soc. Combust., 10, 1 (2005)