화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.101, 1-20, September, 2021
Clean syngas production by gasification of lignocellulosic char: State of the art and future prospects
E-mail:
Using lignocellulosic char instead of the original biomass avoids the need for costly cleaning and conditioning stages of the producer gasification gas. However, lignocellulosic char gasification has been less extensively studied than gasification of lignocellulosic biomass, and a review of published works on this topic was missing. In this review the present status of char gasification technologies and their future prospects are critically discussed, including possible research opportunities. To date, most studies on char gasification have been performed in thermogravimetric analyzers (TGA) or TGA-like experimental setups. The major setback of TGA and TGA-like equipment is that they do not mimic the actual reaction conditions occurring in gasification reactors, which impedes a direct extrapolation of the findings during the scale-up of different gasification technologies. For this reason, in this literature review focus was put on studies undertaken in industrially relevant reactors, both in batch and continuous configurations. Overall, char gasification can be deemed a valid alternative for clean syngas production, contributing to an integral valorization of lignocellulosic residues within different biorefinery schemes. Of these, process intensification by microwave heating offers interesting opportunities for research and scaling-up, though efforts must be directed toward developing continuous microwave-assisted gasification processes.
  1. Ren J, Cao JP, Zhao XY, Yang FL, Wei XY, Renew. Sust. Energ. Rev., 116, 109426 (2019)
  2. Claude V, Courson C, Kohler M, Lambert SD, Energy Fuels, 30(11), 8791 (2016)
  3. Motta IL, Miranda NT, Filho RM, Maciel MRW, Renew. Sust. Energ. Rev., 94, 998 (2018)
  4. Trippe F, Frohling M, Schultmann F, Stahl R, Henrich E, Dalai A, Fuel Process. Technol., 106, 577 (2013)
  5. Wang TF, Wang JF, Jin Y, Ind. Eng. Chem. Res., 46(18), 5824 (2007)
  6. Ail SS, Dasappa S, Renew. Sust. Energ. Rev., 58, 267 (2016)
  7. Steynberg AP, Dry ME, Davis BH, Breman BB, Fischer-Tropsch reactors, Stud. Surf. Sci. Catal., 152, Elsevier, 2004.
  8. Yang X, Su X, Chen D, Zhang T, Huang Y, Chin. J. Catal., 41, 561 (2020)
  9. Fiedler E, et al., Encycl. Ind. Chem., Germany, 2005.
  10. Haro P, Trippe F, Stahl R, Henrich E, Appl. Energy, 108, 54 (2013)
  11. Ilias S, Bhan A, ACS Catal., 3, 18 (2013)
  12. Mokrani T, Scurrell M, Catal. Rev., 51, 1 (2009)
  13. Tan EC, Talmadge M, Dutta A, Hensley J, Snowden-Swan LJ, Humbird D, Schaidle J, Biddy M, Biofuels Bioprod. Biorefin., 10, 17 (2016)
  14. Moreira R, Vaz R, Portugal A, Gil-Lalaguna N, Sanchez JL, Bimbela F, Energy Fuels, 32(1), 406 (2018)
  15. Basu P, Gasification theory and modeling of gasifiers, Biomass Gasif. Des. Handb., Elsevier, Oxford, UK, 2010.
  16. Trippe F, Frohling M, Schultmann F, Stahl R, Henrich E, Fuel Process. Technol., 92(11), 2169 (2011)
  17. Bridgwater AV, Fuel, 71, 631 (1995)
  18. Bridgwater AV, Toft AJ, Brammer JG, Renew. Sust. Energ. Rev., 6, 181 (2002)
  19. Situmorang YA, Zhao Z, Yoshida A, Abudula A, Guan G, Renew. Sust. Energ. Rev., 117, 109486 (2020)
  20. Safarian S, Unnþorsson R, Richter C, Renew. Sust. Energ. Rev., 110, 378 (2019)
  21. Shahabuddin M, Alam MT, Krishna BB, Bhaskar T, Perkins G, Bioresour. Technol., 312, 123596 (2020)
  22. Karl J, Proll T, Renew. Sust. Energ. Rev., 98, 64 (2018)
  23. Mahinpey N, Gomez A, Chem. Eng. Sci., 148, 14 (2016)
  24. Watson J, Zhang Y, Si B, Chen WT, de Souza R, Renew. Sust. Energ. Rev., 83, 1 (2018)
  25. Tamosiunas A, Jeguirim M, Char gasification, Char Carbon Mater. Deriv. from Biomass, Elsevier, 2019.
  26. Basu P, Tar production and destruction, Biomass Gasif. Des. Handb., Elsevier, Oxford, UK, 2010.
  27. Rios MLV, Gonzalez AM, Lora EES, del Olmo OAA, Biomass Bioenergy, 108, 345 (2018)
  28. Garcia G, Campos E, Fonts I, Sanchez JL, Herguido J, Energy Fuels, 27(5), 2835 (2013)
  29. Woolcock PJ, Brown RC, Biomass Bioenerg., 52, 54 (2013)
  30. Li Q, Song GH, Xiao J, Sun TT, Yang K, Int. J. Hydrog. Energy, 44(5), 2569 (2019)
  31. Gomez-Barea A, Leckner B, Perales AV, Nilsson S, Cano DF, Appl. Therm. Eng., 50, 1453 (2013)
  32. Sun Z, Toan S, Chen SY, Xiang WG, Fan MH, Zhu M, Ma SW, Int. J. Hydrog. Energy, 42(25), 16031 (2017)
  33. Rodrigues T, Junior AB, J. Anal. Appl. Pyrolysis, 143 (2019)
  34. den Uil H, Prog. Thermochem. Biomass Convers., Blackwell Science Ltd, Oxford, UK, 2001.
  35. Abdullah H, Wu HW, Energy Fuels, 23(8), 4174 (2009)
  36. de Miranda RC, Bailis R, Vilela AdO, Energy Sustain. Dev., 17, 171 (2013)
  37. Basu P, Pyrolysis and torrefaction, Biomass Gasif. Des. Handb., Elsevier, 2010.
  38. Ronsse F, Nachenius RW, Prins W, Carbonization of biomass, Recent Adv. Thermo-Chemical Convers. Biomass, Elsevier, 2015.
  39. Nzihou A, Stanmore B, Sharrock P, Energy, 58, 305 (2013)
  40. Wang L, Sandquist J, Varhegyi G, Guell BM, Energy Fuels, 27(10), 6098 (2013)
  41. Kajita M, Kimura T, Norinaga K, Li CZ, Hayashi JI, Energy Fuels, 24, 108 (2010)
  42. Wright MM, et al., Techeconomic analysis of biomass fast pyrolysis to liquid fno-Economic Analysis of Biomass Fast Pyrolysis to Liquid Fuels Golden, Colorado, USA, (2010).
  43. Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nunoura T, Antal MJ, Ind. Eng. Chem. Res., 46(18), 5954 (2007)
  44. Antal MJ, Gronli M, Ind. Eng. Chem. Res., 42(8), 1619 (2003)
  45. Mochidzuki K, Soutric F, Tadokoro K, Antal MJ, Toth M, Zelei B, Varhegyi G, Ind. Eng. Chem. Res., 42(21), 5140 (2003)
  46. Rodriguez-Reinoso F, Introd. to Carbon Technol., Universidad de Alicante, Alicante, p.672 1997.
  47. Raveendran K, Ganesh A, Fuel, 77(7), 769 (1998)
  48. Di Blasi C, Prog. Energy Combust. Sci., 35(2), 121 (2009)
  49. Matsumoto K, Takeno K, Ichinose T, Ogi T, Nakanishi M, Fuel, 88(3), 519 (2009)
  50. Haykiri-Acma H, Yaman S, Kucukbayrak S, Energy Conv. Manag., 47(7-8), 1004 (2006)
  51. Link S, Arvelakis S, Hupa M, Yrjas P, Kulaots I, Paist A, Energy Fuels, 24, 6533 (2010)
  52. Nanou P, Murillo HEG, van Swaaij WPM, van Rossum G, Kersten SRA, Chem. Eng. J., 217, 289 (2013)
  53. Lopez-Gonzalez D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L, Energy, 71, 456 (2014)
  54. Zeng X, Kahara K, Ueki Y, Yoshiie R, Xu GW, Naruse I, Energy Fuels, 33(10), 9805 (2019)
  55. Kumar M, Gupta RC, Fuel, 73, 1922 (1994)
  56. Kumar M, Gupta RC, Fuel Process. Technol., 38, 233 (1994)
  57. Mermoud F, Salvador S, de Steene LV, Golfier F, Fuel, 85(10-11), 1473 (2006)
  58. Encinar JM, Gonzalez JF, Rodriguez JJ, Ramiro MJ, Fuel, 80, 2025 (2001)
  59. Marquez-Montesinos F, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ, Fuel, 81(4), 423 (2002)
  60. Umeki K, Roh SA, Min TJ, Namioka T, Yoshikawa K, Bioresour. Technol., 101(11), 4187 (2010)
  61. Guizani C, Jeguirim M, Gadiou R, Sanz FJE, Salvador S, Energy, 112, 133 (2016)
  62. Wu HW, Yip K, Tian FJ, Xie ZL, Li CZ, Ind. Eng. Chem. Res., 48(23), 10431 (2009)
  63. Yip K, Tian F, Hayashi J, Wu H, Energy Fuels, 24, 173 (2010)
  64. Nilsson S, Gomez-Barea A, Fuentes-Cano D, Campoy M, Fuel, 125, 192 (2014)
  65. Lewis AD, Fletcher EG, Fletcher TH, Energy Fuels, 28(9), 5812 (2014)
  66. Fernandez A, Soria J, Rodriguez R, Baeyens J, Mazza G, J. Environ. Manage., 233, 626 (2019)
  67. Fernandez A, Rodriguez-Ortiz L, Asensio D, Rodriguez R, Mazza G, J. Environ. Chem. Eng., 8, 103829 (2020)
  68. Jia S, Ning SY, Ying H, Sun YJ, Xu W, Yin H, Energy Conv. Manag., 151, 457 (2017)
  69. Chaudhari ST, Bej SK, Bakhshi NN, Dalai AK, Energy Fuels, 15(3), 736 (2001)
  70. Chaudhari ST, Dalai AK, Bakhshi NN, Energy Fuels, 17(4), 1062 (2003)
  71. Xiao N, Luo H, Wei W, Tang Z, Hu B, Kong L, Sun Y, J. Anal. Appl. Pyrolysis, 112, 173 (2015)
  72. Bartocci P, Zampilli M, Bidini G, Fantozzi F, Appl. Therm. Eng., 132, 817 (2018)
  73. Zeng WQ, Zhu LJ, Wang Q, Adv. Mater. Res., 830, 477 (2014)
  74. Yan F, Luo SY, Hu ZQ, Xiao B, Cheng G, Bioresour. Technol., 101(14), 5633 (2010)
  75. Sattar A, Leeke GA, Hornung A, Wood J, Biomass Bioenerg., 69, 276 (2014)
  76. Klaas M, Greenhalf C, Ferrante L, Briens C, Berruti F, Int. J. Hydrog. Energy, 40(9), 3642 (2015)
  77. Lopez G, Alvarez J, Amutio M, Arregi A, Bilbao J, Olazar M, Energy, 107, 493 (2016)
  78. Salam PA, Bhattacharya SC, Energy, 31(2-3), 228 (2006)
  79. Ma Z, Zhang SP, Xie DY, Yan YJ, Ren ZW, Chem. Eng. Technol., 36(9), 1599 (2013)
  80. He PW, Luo SY, Cheng G, Xiao B, Cai L, Wang JB, Renew. Energy, 37(1), 398 (2012)
  81. Van de Steene L, Tagutchou JP, Mermoud F, Martin E, Salvador S, Fuel, 89(11), 3320 (2010)
  82. Gujar AC, Baik J, Garceau N, Muradov N, T-Raissi A, Fuel, 118, 27 (2014)
  83. Van de Velden M, Baeyens J, Boukis I, Biomass Bioenergy, 32, 128 (2008)
  84. Boukis IP, Grammelis P, Bezergianni S, Bridgwater AV, Fuel, 86(10-11), 1372 (2007)
  85. Ahrenfeldt J, Henriksen U, Jensen TK, Gobel B, Wiese L, Kather A, Egsgaard H, Energy Fuels, 20(6), 2672 (2006)
  86. Gadsboll RO, Sarossy Z, Jorgensen L, Ahrenfeldt J, Henriksen UB, Energy, 158, 495 (2018)
  87. Wang ZQ, He T, Qin JG, Wu JL, Li JQ, Zi ZY, Liu GB, Wu JH, Sun L, Fuel, 150, 386 (2015)
  88. Vogels J, Industrial scale hydrogen production from biomass via CHOREN’s unique Carbo-V-process, 18th World Hydrog. Energy Conf. p.1 (2010).
  89. Donaj P, et al., Flexibility and robustness of WoodRoll system, 1th Int. Conf. Renew. Energy Gas Technol., Malmo., Sweden, n.d.
  90. Henriksen U, Ahrenfeldt J, Jensen TK, Gøbel B, Bentzen JD, Hindsgaul C, Sørensen LH, Energy, 31, 1542 (2006)
  91. Brandt P, Larsen E, Henriksen U, Energy Fuels, 14(4), 816 (2000)
  92. Ahrenfeldt J, Egsgaard H, Stelte W, Thomsen T, Henriksen UB, Fuel, 112, 662 (2013)
  93. Heidenreich S, Muller M, Foscolo PU, Advanced process combination concepts, Adv. Biomass Gasif., Elsevier, 2016.
  94. Rauch R, Hrbek J, Hofbauer H, Rev. Energy Environ., 3, 343 (2014)
  95. Wertz JL, Bedue O, Mercier JP, Fuels and chemicals from biomass, Cellul. Sci. Technol., p.303 (2010).
  96. Broer KM, Peterson C, Gasification, Thermochem. Process. Biomass, John Wiley & Sons, Ltd, Chichester, UK, 2019.
  97. Ljunggren R, WoodRoll1 ultraclean syngas to make a bio-energetic difference 9, in: 9thI Nternational Semin. Gasif., Malmo, Denmark, n.d.
  98. Fernandez Y, Arenillas A, Diez MA, Pis JJ, Menendez JA, J. Anal. Appl. Pyrolysis, 84, 145 (2009)
  99. Liu SM, et al., Gasification of acetic acid as a model oxygenate from bio-oil by microwave heating, 2010 Int. Conf. E-Product EService E-Entertainment, ICEEE, 2010.
  100. Lam SS, Russell AD, Lee CL, Chase HA, Fuel, 92(1), 327 (2012)
  101. Dominguez A, Menendez JA, Inguanzo M, Pis JJ, Bioresour. Technol., 97(10), 1185 (2006)
  102. Fidalgo B, Menendez JA, Fuel Process. Technol., 95, 55 (2012)
  103. Yin CG, Bioresour. Technol., 120, 273 (2012)
  104. Li LZ, Meng B, Qin XM, Yang ZJ, Chen J, Yan KS, Wang FM, Renew. Energy, 149, 1205 (2020)
  105. Li J, Jiao L, Tao J, Chen G, Hu J, Yan B, Mansour M, Guo Y, Ye P, Ding Z, Yu T, Appl. Energy, 272, 115194 (2020)
  106. Menendez JA, Arenillas A, Fidalgo B, Fernandez Y, Zubizarreta L, Calvo EG, Bermudez JM, Fuel Process. Technol., 91(1), 1 (2010)
  107. Meredith R, Engineers’ Handbook of Industrial Microwave Heating, (1998).
  108. Rennard DC, Kruger JS, Michael BC, Schmidt LD, Ind. Eng. Chem. Res., 49(18), 8424 (2010)
  109. Pozar D, Microwave Engineering, fourth edition, John Wiley & Sons, Inc., USA, 2011.
  110. Synthesis O, Copyright L, Gmbh WV, Isbn W, Microwaves in Organic Synthesis, Wiley, 2006.
  111. Stanislaw Grundas, Advances in Induction and Microwave Heating of Mineral and Organic Materials, InTech, 2011.
  112. State RN, Volceanov A, Muley P, Boldor D, Bioresour. Technol., 277, 179 (2019)
  113. Menendez JA, Juarez-Perez EJ, Ruisanchez E, Bermudez JM, Arenillas A, Carbon N. Y., 49, 346 (2011)
  114. Fernandez Y, Arenillas A, Bermudez JM, Menendez JA, J. Anal. Appl. Pyrolysis, 88, 155 (2010)
  115. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M, Bioresour. Technol., 158, 193 (2014)
  116. Fernandez Y, Menendez JA, J. Anal. Appl. Pyrolysis, 91, 316 (2011)
  117. Lahijani P, Mohammadi M, Zainal ZA, Mohamed AR, Thermochim. Acta, 604, 61 (2015)
  118. Chun YN, Song HG, Energy, 190, 116386 (2020)
  119. Swanson RM, et al., Techno-Economic Analysis of Biomass-to-Liquids Production Based on Gasification Scenarios Golden, Colorado, USA, (2009).
  120. Worley M, Yale J, Biomass Gasification Technology Assessment Consolidated Report Biomass Gasification Technology Assessment Consolidated Report Golden, Colorado, USA, (2012).
  121. Dimitriou I, Goldingay H, Bridgwater AV, Renew. Sust. Energ. Rev., 88, 160 (2018)
  122. Fantini M, Biorefineries Target. Energy, High Value Prod. Waste Valoris, Springer International Publishing, Cham, 2017.
  123. Barber J, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 365, 1007 (2007)
  124. Krishna SH, Huang KF, Barnett KJ, He JY, Maravelias CT, Dumesic JA, Huber GW, De Bruyn M, Weckhuysen BM, AIChE J., 64(6), 1910 (2018)
  125. de Jong E, Higson A, Walsh P, Wellisch M, Task 42 Biobased Chemicals - Value Added Products from Biorefineries, (2011).
  126. Pretzer WR, Habib MM, Recent advances in alcohol homologation: the effect of promoters, MA, 1984.
  127. Sheldon RA, Methanol Carbonylation and Related Chemistry, (1983).
  128. Bertleff W, Roeper M, Sava X, Carbonylation, Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007.
  129. Cheung H, Tanke RS, Torrence GP, Acetic acid, Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2000.
  130. Vakalis S, Sotiropoulos A, Moustakas K, Malamis D, Baratieri M, Waste Manage. Res., 34, 564 (2016)
  131. Piazzi S, Zhang X, Patuzzi F, Baratieri M, Waste Manag., 105, 550 (2020)
  132. Kozlov AN, Solomin SV, Development of a multi-stage biomass gasification technology to produce quality gas, Sweden, 2017.
  133. Kozlov A, Marchenko O, Solomin S, Energy Procedia, 158, 1004 (2019)