화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.101, 405-413, September, 2021
Electric and magnetic properties of a composite consisting of silicone rubber and ferrofluid
E-mail:
Electric and magnetic properties in the frequency range (500 Hz - 2 MHz) of a composite consisting of silicone rubber and ferrofluid with magnetite particles, in a mass ratio 1/20, were investigated. Structural analysis of nanoparticles within the ferrofluid (FM sample) was performed by XRD diffraction and morphology of composite (SR-FM sample), was investigated by SEM analysis. The frequency dependence of the imaginary component, l00 , of complex magnetic permeability of composite sample exhibits two maxima. These have been associated with the Brownian relaxation process within the ferrofluid drops remained in vesicles of silicone rubber. At the same time, a dielectric relaxation process attributed to the Schwarz relaxation was also highlighted. The mechanical mobility, μ", of the charge carriers, u = 1.5.108 m/sN, from the composite sample, was computed. Based on the complex impedance measurements, the frequency dependence of the conductivity, σ(f), was determined, which respects the Jonscher universal law. The static conductivity, rdc = 2.38.10-7 S/m, of composite sample, was determined. The results allowed the evaluation of the energy barrier of electrical conduction process, Wm= 0.353 eV and the crossover frequency, ωc = 3.39.10 5 rad/s, for composite sample. The performed study is useful in manufacturing magnetic elastomeric composite materials with predetermined properties and for possible technological and biomedical applications.
  1. Yoshida K, Morigami H, Microelectronics Reliability, 44 (2004).
  2. Nabiyev AA, et al., Polym. Degrad. Stabil., 171 (2020)
  3. Gorak P, Postawa P, Trusilewicz LN, Kalwik A, J. Clean Prod., 289 (2021)
  4. Sareni B, Krahenbuhl L, Beroual A, Brosseau C, J. Appl. Phys., 81(5), 2375 (1997)
  5. Ram R, Soni V, Khastgir D, Compos. Part B: Eng., 185 (2020)
  6. Enescu E, Lungu P, Marinescu S, Dragoi P, J. Optoelectr. Adv. Mater., 8(2), 745 (2006)
  7. Bunoiu M, Bica I, J. Ind. Eng. Chem., 37, 312 (2016)
  8. Rosensweig RE, Ferrohydrodynamics, Cambridge University Press, 1985.
  9. Raji M, Essabir H, Essassi EM, Rodrigue D, Bouhfid R, Qaiss AEK, Polym. Compos., 16(2), 101 (2016)
  10. Vinnik DA, et al., J. Magn. Magn. Mater., 498 (2020)
  11. Kozlovskiy AL, Kenzhina IE, Zdorovets MV, Ceram. Int., 46, 10262 (2020)
  12. Algarou NA, Slimani Y, Almessiere MA, Alahmari FS, Vakhitov MG, Klygach DS, Trukhanov SV, Trukhanov AV, Baykal A, J. Mater. Res. Technol., 9(9), 5858 (2020)
  13. Trukhanov AV, Algarou NA, Slimani Y, Almessiere MA, Baykal A, et al., RSC Adv., 10, 32638 (2020)
  14. Yakovenko OS, Matzui LY, Vovchenko LL, Lozitsky OV, Prokopov OI, et al., Molec. Cryst Liq. Cryst., 661, 68 (2018)
  15. Yakovenko OS, et al., Appl. Nanosci., 10, 4747 (2020)
  16. Fannin PC, Charles SW, J. Phys. D-Appl. Phys., 22, 187 (1989)
  17. Malaescu I, Hrianca I, J. Magn. Magn. Mater., 157-158, 585 (1996)
  18. Schwarz G, J. Phys. Chem., 66(12), 2636 (1962)
  19. Marin CN, Malaescu I, Savici A, Acta Phys. Pol. A, 124(4), 724 (2013)
  20. Rajnak M, Petrenko VI, Avdeev MV, Ivankov OI, Feoktystov A, Dolnik B, Kurimsky J, Kopcansky P, Timko M, Appl. Phys. Lett., 107 (2015)
  21. B.K.P. Scaife Principles of Dielectrics 1998 Oxford Clarendon Press.
  22. Marin CN, Fannin PC, Malaescu I, Matu G, Phys. Lett. A, 384 (2020)
  23. Harun MH, Saion E, Kassim A, Mahmud E, Hussain MY, Mustafa IS, J. Adv. Sci. Arts, 1(1), 9 (2009)
  24. Gleiter H, Acta Material., 48(1), 1 (2000)
  25. Jiang R, Da Y, Han X, Chen Y, Deng Y, Wenbin H, Cell Reports Physical Science, 2 (2021)
  26. Almessiere MA, Slimani Y, Trukhanov AV, Baykal A, Gungunes H, Trukhanova EL, Trukhanovc SV, Kostishin VG, J. Ind. Eng. Chem., 90, 251 (2020)
  27. Zdorovets MV, Kozlovskiy AL, J. Alloy. Compd., 815 (2020)
  28. http://www.prochima.com/ENG/product.asp?id=7.
  29. Gabor L, Minea R, Gabor D, RO Patent 108851 (1994).
  30. Susan-Resiga D, Malaescu I, Marinica O, Marin CN, Phys. B, 587, 412150 (2020)
  31. Mihalca I, Ercuta A, Ionascu C, Sens. Actuators A-Phys., 106(1-3), 61 (2003)
  32. Chantrell RW, Popplewell J, Charles SW, IEEE Trans. Magn., 14, 975 (1978)
  33. Su Z, Coppens P, Acta Crystallogr. Sect. A, 53, 749 (1997)
  34. Marin CN, Fannin PC, Malaescu I, J. Magn. Magn. Mater., 388, 45 (2015)
  35. Debye P, Polar Molecules, The Chemical Catalog Company, New York, 1929.
  36. Bickford LR, Phys. Rev., 78, 449 (1950)
  37. Fannin PC, Marin CN, Couper C, J. Magn. Magn. Mater., 322, 1682 (2010)
  38. Lungu A, Malaescu I, Marin CN, Vlazan P, Sfirloaga P, Phys. B, 462, 80 (2015)
  39. ASTM D150-98 - Standard test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation.
  40. Goswami AP, Goswami A, Thin Solid Films, 16, 175 (1973)
  41. Chenari HM, Golzan MM, Sedghi H, Hassanzadeh A, Talebian M, Curr. Appl. Phys., 11(4), 1071 (2011)
  42. Malaescu I, Lungu A, Marin CN, Sfirloaga P, Vlazan P, Brindusoiu S, Poienar M, Cer. Internat., 44, 11610 (2018)
  43. Horn T, Deutschlander S, Lowen H, Maret G, Keim P, Phys. Rev. E, 88 (2013)
  44. Wubbenhorst M, van Turnhout J, J. Non-Cryst. Solids, 305, 40 (2002)
  45. Jonscher AK, Universal Relaxation Law, 1st edn.:., Chelsea Dielectrics Press, London, 1996.
  46. Funke K, Prog. Solid State Chem., 22, 111 (1993)
  47. Okuda T, Jufuku N, Hidaka S, Terada N, Phys. Rev. B, 72 (2005)
  48. Pike GE, Phys. Rev. B, 6, 1572 (1972)
  49. Elliott SR, Philos. Mag. B., 36(6), 1291 (1977)
  50. Trukhanov SV, Lobanovski LS, Bushinsky MV, Troyanchuk IO, Szymczak H, J. Phys. Condens. Matter, 15, 1783 (2003)
  51. Zdorovets MV, Kozlovskiy AL, Ceram. Int., 46, 14548 (2020)
  52. Zharvan V, Kamaruddin YNI, Samnur S, Sujiono EH, IOP Conf. Series: Materials Science and Engineering, 202, 012072 (2017).
  53. Trukhanov SV, Fedotova VV, Trukhanov AV, Szymczak H, Botez CE, Tech. Phys., 53, 49 (2008)
  54. Kozlovskiy AL, Zdorovets MV, Compos. B: Eng., 191 (2020)