화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 264-274, November, 2021
In-situ exsolution of Ni nanoparticles to achieve an active and stable solid oxide fuel cell anode catalyst on A-site deficient La0.4Sr0.4Ti0.94Ni0.06O3-δ
E-mail:, ,
(La,Sr)TiO3 has been investigated as a promising anode material for solid oxide fuel cells (SOFCs) owing to its high electronic conductivity and superior phase stability. However, the low catalytic activity of (La,Sr) TiO3 materials is a major obstacle to the application of SOFCs. Exsolution has emerged as an effective strategy to overcome the low catalytic activity of (La,Sr)TiO3 materials. In this work, Ni-doped A-sitedeficient La0.4Sr0.4TiO3-δ (LST) (i.e., La0.4Sr0.4Ti0.94Ni0.06O3-δ; LSTN) with in-situ exsolved Ni nanoparticles (NPs) was developed and the effects of exsolved Ni NPs on H2 oxidation was investigated. The doped Ni was exsolved and formed NPs on the LSTN surface under reducing conditions. Owing to the high catalytic activity of the exsolved Ni NPs, the SOFC with LSTN-Ce0.9Gd0.1O2-δ (GDC) yielded a maximum power density of 0.46Wcm-2 at 850 °C, 91% higher than that of the cell with LST-GDC, as well as high long-term and redox stability. Furthermore, density functional theory calculations revealed that the adsorption and dissociation of H2 were more favorable for exsolved Ni NPs than for pure Ni owing to the more positively charged surface of the exsolved Ni NPs in the LSTN. These results demonstrated that exsolution is an effective method for improving the electrocatalytic activity of perovskite (La,Sr)TiO3 materials.
  1. Park SD, Vohs JM, Gorte RJ, Nature, 404(6775), 265 (2000)
  2. Huang YH, Dass RI, Xing ZL, Goodenough JB, Science, 312, 254 (2006)
  3. Wachsman ED, Lee KT, Science, 334(6058), 935 (2011)
  4. Lee KT, Gore CM, Wachsman ED, J. Mater. Chem., 22 (2012)
  5. Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC, J. Electrochem. Soc., 146(1), 69 (1999)
  6. Lee KT, Yoon HS, Ahn JS, Wachsman ED, J. Mater. Chem., 22 (2012)
  7. Lee KT, Vito NJ, Wachsman ED, J. Power Sources, 228, 220 (2013)
  8. Holzer L, Iwanschitz B, Hocker T, Munch B, Prestat M, Wiedenmann D, Vogt U, Holtappels P, Sfeir J, Mai A, Graule T, J. Power Sources, 196(3), 1279 (2011)
  9. Buyukaksoy A, Petrovsky V, Dogan F, J. Electrochem. Soc., 159(12), F841 (2012)
  10. Wang W, Su C, Wu YZ, Ran R, Shao ZP, Chem. Rev., 113(10), 8104 (2013)
  11. Marina OA, Canfield NL, Stevenson JW, Solid State Ion., 149(1-2), 21 (2002)
  12. Kim KJ, Shin TH, Lee KT, J. Alloy. Compd., 787, 1143 (2019)
  13. Yang X, Sun K, Ma M, Xu C, Ren R, Qiao J, Wang Z, Zhen S, Hou R, Sun W, Appl. Catal. B: Environ., 272 (2020)
  14. Zhou X, Yan N, Chuang KT, Luo J, RSC Adv., 4, 118 (2014)
  15. Kim KJ, Rath MK, Kwak HH, Kim HJ, Han JW, Hong ST, Lee KT, ACS Catal., 9, 1172 (2019)
  16. Myung JH, Neagu D, Miller DN, Irvine JTS, Nature, 537(7621), 528 (2016)
  17. Kyriakou V, Neagu D, Papaioannou EI, Metcalfe IS, van de Sanden MCM, Tsampas N, Appl. Catal. B: Environ., 258 (2019)
  18. Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS, Nat. Chem., 5, 916 (2013)
  19. Neagu D, Oh TS, Miller DN, Menard H, Bukhari SM, Gamble SR, Gorte RJ, Vohs JM, Irvine JTS, Nat. Comm., 6, 8120 (2015)
  20. Zhou J, Shin TH, Ni , Chen G, Wu K, Cheng Y, Irvine JTS, Chem. Mater., 28, 2981 (2016)
  21. Park BH, Choi GM, J. Power Sources, 293, 684 (2015)
  22. Zhou J, Yang J, Zong Z, Fu L, Lian Z, Ni C, Wang J, Wan Y, Wu K, J. Power Sources, 468 (2020)
  23. Gan L, Ye L, Tao S, Xie K, Phys. Chem. Chem. Phys., 18, 3137 (2016)
  24. Neagu D, Irvine JTS, Chem. Mater., 22, 5042 (2010)
  25. Kresse G, Furthmuller J, Comput. Mater. Sci., 6, 15 (1996)
  26. Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
  27. Grimme S, J. Comput. Chem., 27, 1787 (2006)
  28. Jain A, Hautier G, Ong SP, Moore CJ, Fischer CC, Persson KA, Ceder G, Phys. Rev. B, 84 (2011)
  29. Klyukin K, Alexandrov V, Phys. Rev. B, 95 (2017)
  30. Monkhorst HJ, Pack JD, Phys. Rev. B, 13, 5188 (1976)
  31. de Amorim RV, Batista KE, Nagurniak GR, Orenha RP, Parreira RL, Piotrowski MJ, Dalton Trans., 49, 6407 (2020)
  32. Granja-DelRio A, Abdulhussein HA, Johnston RL, J. Phys. Chem. C, 123, 26583 (2019)
  33. Henkelman G, Uberuaga BP, Jonsson H, J. Chem. Phys., 113(22), 9901 (2000)
  34. Kim KIN, Kim HS, Kim HS, Yun JW, J. Ind. Eng. Chem., 68, 187 (2018)
  35. Arrive C, Delahaye T, Joubert O, Gauthier G, J. Power Sources, 223, 341 (2013)
  36. Momma K, Izumi F, J. Appl. Crystallogr., 41, 653 (2008)
  37. Wan Y, Xing Y, Xie Y, Shi N, Xu J, Xia C, ACS. Appl. Mater. Interaces, 11, 42271 (2019)
  38. Liu S, Liu Q, Luo JL, ACS Catal., 6, 6219 (2016)
  39. Kim K, Jeong J, Azad AK, Jin SB, Kim JH, Appl. Surf. Sci., 365, 38 (2016)
  40. Papargyriou D, Miller DN, Sirr Irvine JT, J. Mater. Chem. A, 7, 15812 (2019)
  41. Lv H, Lin L, Zhang X, Gao D, Song Y, Zhou Y, Liu Q, Wang G, Bao X, J. Mater. Chem. A, 7, 11967 (2019)
  42. Batis NH, Delichere P, Batis H, Appl. Catal. A: Gen., 282(1-2), 173 (2005)
  43. Ren R, Wang Z, Xu C, Sun W, Qiao J, Rooney DW, Sun K, J. Mater. Chem. A, 7, 18365 (2019)
  44. Liu SB, Liu QX, Fu XZ, Luo JL, Appl. Catal. B: Environ., 220, 283 (2018)
  45. Roy S, Viswanath B, Hegde MS, Madras G, J. Phys. Chem. C, 112, 6002 (2008)
  46. Liang XY, Wu CZ, Yu XL, Huang WX, Yin HF, Catal. Lett., 148(9), 2830 (2018)
  47. Hou N, Yao T, Li P, Yao X, Gan T, Fan L, Wang J, Zhi X, Zhao Y, Li Y, ACS. Appl. Mater. Interaces, 11, 6995 (2019)
  48. Howard S, Yau J, Anderson H, J. Appl. Phys., 65, 1492 (1989)
  49. Kim KJ, Rath MK, Kwak HH, Kim HJ, Han JW, Hong ST, Lee KT, ACS Catal., 9, 1172 (2019)
  50. Fan Z, Prinz FB, Nano Lett., 11, 2202 (2011)
  51. Hosoi T, Yonekura T, Sunada K, Sasaki K, J. Electrochem. Soc., 162, F136 (2014)
  52. Abderezzak B, Fuel Cells, 53 (2018).
  53. Liu T, Liu H, Zhang X, Lei L, Zhang Y, Yuan Z, Chen F, Wang Y, J. Mater. Chem. A, 7, 13550 (2019)
  54. Xu C, Sun W, Ren R, Yang X, Ma M, Qiao J, Wang Z, Zhen S, Sun X, Appl. Catal. B: Environ., 282 (2021)
  55. Mun Y, Lee S, Kim K, Kim S, Lee S, Han JW, Lee J, J. Am. Chem. Soc., 141(15), 6254 (2019)