화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.4, 644-651, November, 2021
Refractive Index and Excess Volume for Diisopropylamine + Isomeric Butanol Mixtures in terms of Nakata and Sakurai model
E-mail:
Alkyl amines are widely used in various industries. Nowadays these are also used in CO2 capture technology because amines react with CO2 and remove it from the flue gas. To make the amines more compatible towards this technology, physico chemical properties may be altered by mixing with other solvents. In the present report, we measured the refractive properties of pure diisopropylamine (DIPA) (1) + isomeric butanol (2) at 298.15 K to 308.15 K. The Δn values were positive for DIPA + n-butanol or sec-butanol or isobutanol or tert-butanol mixtures. The measured data was correlated with Redlich-Kister equation. The excess molar volume data were predicted from refractive index data using Nakata and Sakurai model. The experimental data were also predicted by various correlations, and the prediction capability of these correlations was reported through standard deviation. Further, the deviation in refractive index (Δn) data was interpreted by the consideration of specific molecular interactions between DIPA and isomeric butanol.
  1. Cases AM, Marigliano ACG, Bonatti CM, Solimo HN, J. Chem. Eng. Data, 46, 712 (2001)
  2. Marigliano ACG, Solimo HN, J. Chem. Eng. Data, 47(4), 796 (2002)
  3. Marigliano ACG, Varetti EL, J. Phys. Chem. A, 106(6), 1100 (2002)
  4. Patil SS, Mirgane SR, Arbad BR, Journal of Saudi Chemical Society, 18, 945 (2014).
  5. Mrad S, Lafuente C, Giner B, Hichri M, Thermochimica Acta, 655, 169 (2017)
  6. Majstorovic DM, Zivkovic EM, Kijevcanin ML, J. Mol. Liq., 248, 219 (2017)
  7. Gahlyan S, Bhagat P, Maken S, Park SJ, J. Mol. Liq., 306, 112859 (2020)
  8. Kim MG, Park SJ, Hwang IC, Korean J. Chem. Eng., 25(5), 1160 (2008)
  9. Noh HJ, Park SJ, In SJ, J. Ind. Eng. Chem., 16(2), 200 (2010)
  10. Park SJ, Han KJ, Gmehling J, Fluid Phase Equilib., 200(2), 399 (2002)
  11. Hwang IC, Park SJ, Han KJ, Fluid Phase Equilib., 309(2), 145 (2011)
  12. Gahlyan S, Rani M, Devi R, Park SJ, Maken S, J. Mol. Liq., 306, 112605 (2020)
  13. Gahlyan S, Rani M, Lee I, Moon I, Maken SK, Korean J. Chem. Eng., 32(1), 168 (2015)
  14. Gahlyan S, Rani M, Maken S, J. Mol. Liq., 199, 42 (2014)
  15. Chen YR, Caparanga AR, Soriano AN, Li MH, J. Chem. Thermodyn., 42(4), 518 (2010)
  16. Rani M, Gahlyan S, Om H, Verma N, Maken S, J. Mol. Liq., 194, 100 (2014)
  17. Chowdhury FI, Akhtar S, Saleh MA, Khandaker KU, Amin YM, Arof AK, J. Mol. Liq., 223, 299 (2016)
  18. Smirnov VI, Badelin VG, Thermochim. Acta, 551, 145 (2013)
  19. Sadeghi R, Azizpour S, J. Chem. Eng. Data, 56(2), 240 (2011)
  20. Kim JI, Park SJ, Choi YY, Kim SB, J. Chem. Eng. Data, 56(5), 1798 (2011)
  21. Hwang IC, Park SJ, Han KJ, In SJ, J. Ind. Eng. Chem., 18(1), 499 (2012)
  22. Llovell F, Vilaseca O, Jung N, Vega LF, Fluid Phase Equilib., 360, 367 (2013)
  23. Lee KH, Park SJ, Korean J. Chem. Eng., 35(1), 222 (2018)
  24. Bhagat P, Maken S, Asian J. Chem., 32, 2443 (2020)
  25. Bhagat P, Maken S, Journal of Molecular Liquids, In press 114640(2020).
  26. Brocos P, Pineiro A, Bravo R, Phys. Chem. Chem. Phys., 5, 550 (2003)
  27. Devi R, Gahlyan S, Rani M, Maken S, Asian J. Chem., 30, 2054 (2018)
  28. Arancibia EL, Katz M, Physics and Chemistry of Liquids, 26, 107 (1993).
  29. Xiao M, Cui D, Yang Q, Liang Z, Puxty G, Conway W, Feron P, International Journal of Greenhouse Gas Control, 82, 8 (2019).
  30. Patil MP, Vaidya PD, The Canadian Journal of Chemical Engineering, 98, 556 (2020).
  31. Patil MP, Vaidya PD, Chem. Eng. Commun., 207, 1440 (2020)
  32. Gomez-Diaz D, Muniz-Mouro A, Navaza JM, Rumbo A, AIChE J., 67, e17071 (2021)
  33. Vuksanovic JM, Bajic DM, Ivanis GR, et al., J. Serb. Chem. Soc., 79, 707 (2014)
  34. Nakata M, Sakurai M, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83, 2449 (1987).
  35. Oswal SL, Oswal P, Gardas RL, Patel SG, Shinde RG, Fluid Phase Equilib., 216(1), 33 (2004)
  36. Dubey GP, Sharma M, Dubey N, J. Chem. Thermodyn., 40(2), 309 (2008)
  37. Vaid ZS, More UU, Oswal SB, Malek NI, Thermochim. Acta, 634, 38 (2016)
  38. Alavianmehr MM, Hemmati N, Ghodrati H, Physics and Chemistry of Liquids, 55, 85 (2017).
  39. Rahul D, Sankar MG, Chand GP, Ramachandran D, J. Mol. Liq., 211, 386 (2015)
  40. Nain AK, Srivastava T, Pandey JD, Gopal S, J. Mol. Liq., 149S, 9 (2009)
  41. Outcalt SL, Laesecke A, Fortin TJ, J. Mol. Liq., 151, 50 (2010)
  42. Bravo-Sanchez MG, Iglesias-Silva GA, Estrada-Baltazar A, Hall KR, J. Chem. Eng. Data, 55(6), 2310 (2010)
  43. Spasojevic VD, Djordjevic BD, Serbanovic SP, Radovic IR, Kijevcanin ML, J. Chem. Eng. Data, 59(6), 1817 (2014)
  44. Tanaka R, Toyama S, J. Chem. Thermodyn., 28(12), 1403 (1996)
  45. Loras S, Monton JB, Espana F, J. Chem. Eng. Data, 42(5), 914 (1997)
  46. Kumar H, J. Mol. Liq., 276, 562 (2019)
  47. Dubey GP, Sharma M, J. Chem. Eng. Data, 52(2), 449 (2007)
  48. Khanlarzadeh K, Iloukhani H, J. Chem. Thermodyn., 43(11), 1583 (2011)
  49. Riddick JA, "Organic Solvents. Physical Properties and Methods of Purification, fourth ed., Wiley New York, 1986.
  50. Giner B, Artigas H, Carrion A, Lafuente C, Royo FM, J. Mol. Liq., 108, 303 (2003)
  51. Kijevcanin ML, Radovic IR, Djordjevic BD, Tasic AZ, Serbanovic SP, Thermochim. Acta, 525(1-2), 114 (2011)
  52. Ortega J, Espiau F, Postigo M, J. Chem. Eng. Data, 50(2), 444 (2005)
  53. Gahlyan S, Rani M, Maken S, J. Mol. Liq., 219, 1107 (2016)