화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.2, 200-206, March, 2010
Excess molar volumes and deviations of refractive indices at 298.15 K for binary and ternary mixtures with pyridine or aniline or quinoline
E-mail:,
Excess molar volume (V^(E)) at 298.15 K are reported for the binary systems of heterocyclic nitric compounds: {ethanol + pyridine}, {ethanol + aniline}, {ethanol + quinoline}, {pyridine + aniline}, {pyridine + quinoline}, {aniline + quinoline}, {N-methylformamide (NMF) + pyridine}, {NMF + aniline}, {NMF + quinoline}, {N,N-dimethylformamide (DMF) + pyridine}, {DMF + aniline} and {DMF + quinoline}. The deviations in molar refractivity (△R) at 298.15 K are also reported for binary systems: {ethanol + pyridine}, {ethanol + aniline}, {NMF + pyridine}, {NMF + aniline}, {DMF + pyridine}, {DMF + aniline} and {pyridine + aniline}. The determined V^(E) and △R were correlated with the Redlich.Kister equation. In addition, the ternary V^(E) data at 298.15 K were predicted with correlated binary parameters for the systems: {ethanol + pyridine + aniline}, {ethanol + pyridine + quinoline}, {ethanol + aniline + quinoline}, {NMF + pyridine + aniline}, {NMF + pyridine + quinoline}, {NMF + aniline + quinoline}, {DMF + pyridine + aniline}, {DMF + pyridine + quinoline} and {DMF + aniline + quinoline}. The ternary △R data at 298.15 K are also predicted for the systems: {ethanol + pyridine + aniline}, {NMF+ pyridine + aniline} and {DMF + pyridine + aniline}.
  1. Pedrosa GC, Salas JA, Katz M, Thermochim. Acta, 160, 243 (1990)
  2. Dominguez M, Pardo J, Lopez MC, Royo FM, Urieta JS, Fluid Phase Equilib., 124(1-2), 147 (1996)
  3. Martinez S, Garriga R, Perez P, Gracia M, Fluid Phase Equilib., 168(2), 267 (2000)
  4. Postigo M, Mariano A, Mussari L, Camacho A, Urieta J, Fluid Phase Equilib., 207(1-2), 193 (2003)
  5. Hwang IC, Kim KR, Park SJ, Han KJ, J. Chem. Eng. Data, 52, 1919 (2007)
  6. Hwang IC, Park SJ, Seo DW, Han KJ, J. Chem. Eng. Data, 54, 78 (2009)
  7. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345 (1948)
  8. Radojkovic N, Tasic A, Grozdanic B, Malic M, J. Chem. Thermodyn., 9, 349 (1977)
  9. Park SJ, Kim HH, Han KJ, Won DB, Lee SB, Choi MJ, Fluid Phase Equilib., 180(1-2), 361 (2001)
  10. Oh JH, Park SJ, J. Chem. Eng. Data, 43(6), 1009 (1998)
  11. Han KJ, Oh JH, Park SJ, J. Ind. Eng. Chem., 13(3), 360 (2007)
  12. Aminabhavi TM, Gopalakrishna B, J. Chem. Eng. Data, 40(4), 856 (1995)
  13. Al-Dujaili AH, Yassen AA, Awwad AM, J. Chem. Eng. Data, 45, 647 (2000)
  14. Nikam PS, Kharat SJ, J. Chem. Eng. Data, 48, 972 (2003)
  15. Kauzman W, Eyring H, J. Am. Chem. Soc., 62, 3113 (1940)
  16. Nigam RK, Singh PP, Aggarwal S, Sharma SP, Fluid Phase Equilib., 16, 25 (1984)
  17. Mohammad AS, Begum S, Hemayet Uddin M, J. Mol. Liq., 94, 155 (2001)
  18. Gonzalez JA, Cobos JC, de la Fuente IG, Mozo I, Thermochim. Acta, 494(1-2), 54 (2009)
  19. Dortmund Data Bank Software Package (DDBSP), version 2006 professional, http://www.ddbst.de.
  20. Chen HW, Tu CH, J. Chem. Eng. Data, 50, 1262 (2005)
  21. Tsierkezos NG, J. Sol. Chem., 36, 289 (2007)
  22. Speight JG, Perry’s Standard Tables and Formulas for Chemical Engineers, McGraw-Hill Professional, 2003,, p. 295.