화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.105, 405-413, January, 2022
Enhancement of the electro-Fenton degradation of organic contaminant by accelerating Fe3+/Fe2+ cycle using hydroxylamine
E-mail:,
The Electro-Fenton process can generate reactive oxygen species capable of oxidizing refractory organic contaminants. However, low regeneration efficiency of Fe2+ restricts its application. Herein, hydroxylamine (HA) was added into the Electro-Fenton (HA/Electro-Fenton) process to accelerate the transformation of Fe3+ to Fe2+. Using dimethyl phthalate (DMP) as target contaminant, the HA/Electro-Fenton system alleviated the two-stage reaction process and accelerated the removal of DMP in the pH range of 2.0-6.0. With improving DMP concentration from 5 mg L-1 to 50 mg L-1, their degradation rate increased in the HA/Electro-Fenton system, while decreased in the Electro-Fenton system. The addition of HA had negligible effect on electro-generation of H2O2, but facilitate the redox cycle of Fe3+/Fe2+ and the generation of hydroxyl radicals, thus improving the degradation of DMP. The final transformation products of HA were N2, N2O, and NO3 -. The presence of PO 4 3- improved DMP degradation, while Cl- and organic matters inhibited DMP removal in varying degrees. This study provided useful reference to solve the low efficiency of Fe3+/Fe2+ cycle and expand the pH application range in the Electro-Fenton process.
  1. Gao DW, Wen ZD, Sci. Total Environ., 541, 986 (2016)
  2. Luo Q, Liu ZH, Yin H, Dang Z, Wu PX, Zhu NW, Lin Z, Liu Y, Water Res., 147, 362 (2018)
  3. Dolatabadi M, Swiergosz T, Ahmadzadeh S, Sci. Total Environ., 772 (2021)
  4. Yuan BL, Li XZ, Graham N, Water Res., 42, 1413 (2008)
  5. Dolatabadi M, Mehrabpour M, Esfandyari M, Ahmadzadeh S, MethodsX, 7 (2020)
  6. Yang J, Dong Z, Jiang C, Wang C, Liu H, Chemosphere, 237 (2019)
  7. Jung HJ, Hong JS, Suh JK, J. Ind. Eng. Chem., 19(4), 1325 (2013)
  8. Dolatabadi M, Ahmadzadeh S, Ghaneian MT, Environ. Prog. Sustainable Energy, 39 (2020)
  9. Dolatabadi M, Ghaneian MT, Wang C, Ahmadzadeh S, J. Mol. Liq., 334 (2021)
  10. Dolatabadi M, Ahmadzadeh S, Water Sci. Technol., 80, 685 (2019)
  11. Abdollahi Y, Abdullah AH, Gaya UI, Ahmadzadeh S, Zakaria A, Shameli K, Zainal Z, Jahangirian H, Yusof NA, J. Braz. Chem. Soc., 23, 236 (2012)
  12. Oturan MA, Aaron JJ, Cri. Rev. Environ. Sci. Technol., 44, 2577 (2014)
  13. Wang J, Wang S, Chem. Eng. J., 401 (2020)
  14. Bhat AP, Gogate PR, J. Hazard. Mater., 403 (2021)
  15. Gligorovski S, Strekowski R, Barbati S, Vione D, Chem. Rev., 115(24), 13051 (2015)
  16. Ganiyu SO, Zhou MH, Martinez-Huitle CA, Appl. Catal. B: Environ., 235, 103 (2018)
  17. Li Y, Liu L, Zhang Q, Su Y, Zhou M, Electrochim. Acta, 382 (2021)
  18. Liu K, Yu JCC, Dong H, Wu JCS, Hoffmann MR, Environ. Sci. Technol., 52, 12667 (2018)
  19. Li D, Zheng T, Liu Y, Hou D, Yao KK, Zhang W, Song H, He H, Shi W, Wang L, Ma J, J. Hazard. Mater., 396 (2020)
  20. Brillas E, Sires I, Oturan MA, Chem. Rev., 109(12), 6570 (2009)
  21. Wang YJ, Li XY, Zhen LM, Zhang HQ, Zhang Y, Wang CW, J. Hazard. Mater., 229, 115 (2012)
  22. Li D, Zheng T, Liu Y, Hou D, He H, Song H, Zhang J, Tian S, Zhang W, Wang L, Ma J, Chem. Eng. J., 394 (2020)
  23. Chen L, Ma J, Li X, Zhang J, Fang J, Guan Y, Xie P, Environ. Sci. Technol., 45, 3925 (2011)
  24. Zou J, Ma J, Chen L, Li X, Guan Y, Xie P, Pan C, Environ. Sci. Technol., 47, 11685 (2013)
  25. Yu F, Zhou M, Zhou L, Peng R, Environ. Sci. Technol. Lett., 1, 320 (2014)
  26. Scharf K, Phys. Med. Biol., 16, 77 (1971)
  27. Li ZY, Wang L, Liu YL, Zhao Q, Ma J, Water Res., 168 (2020)
  28. Scheiner D, Water Res., 10, 31 (1976)
  29. Butler JH, Elkins JW, Mar. Chem., 34, 47 (1991)
  30. Chen L, Li X, Zhang J, Fang J, Huang Y, Wang P, Ma J, Environ. Sci. Technol., 49, 10373 (2015)
  31. Pignatello JJ, Oliveros E, MacKay A, Crit. Rev. Environ. Sci. Technol., 36, 1 (2006)
  32. Robinson RA, Bower VE, J. Phys. Chem., 65, 1279 (1961)
  33. Simic M, Hayon E, J. Am. Chem. Soc., 93, 5982 (1971)
  34. Solisa RR, Mena IF, Nadagouda MN, Dionysiou DD, J. Hazard. Mater., 384 (2020)
  35. Choudhary VR, Jana P, Catal. Commun., 8, 1578 (2007)
  36. Tomat R, Rigo A, Salmaso R, J. Electroanal. Chem. Interfacial Electrochem., 59, 255 (1975)
  37. Sires I, Garrido JA, Rodriguez RM, Brillas E, Oturan N, Oturan MA, Appl. Catal. B: Environ., 72(3-4), 382 (2007)
  38. An J, Li N, Wu Y, Wang S, Liao C, Zhao Q, Zhou L, Li T, Wang X, Feng Y, Environ. Sci. Technol., 54, 10916 (2020)
  39. Li ZY, Liu YL, He PN, Zhang X, Wang L, Gu HT, Zhang HC, Chem. Eng. J., 418 (2021)
  40. Jia J, Liu D, Tian J, Wang W, Ni J, Wang X, Chem. Eng. J., 400 (2020)
  41. Liu J, Dong C, Deng Y, Ji J, Bao S, Chen C, Shen B, Zhang J, Xing M, Water Res., 145, 312 (2018)
  42. Souza FL, Aquino JM, Irikura K, Miwa DW, Rodrigo MA, Motheo AJ, Chemosphere, 109, 187 (2014)
  43. Wei L, Zhang Y, Chen S, Zhu L, Liu X, Kong L, Wang L, J. Environ. Sci., 76, 188 (2019)
  44. Neta P, Huie RE, Ross AB, J. Phys. Chem. Ref. Data, 17(3), 1027 (1988)
  45. Buxton GV, Greenstock CL, Helman WP, Ross AB, J. Phys. Chem. Ref. Data, 17(2), 513 (1988)
  46. Zou J, Enhanced Effectiveness and Mechanism of Fe2+/Persulfate System with Hydroxylamine, Harbin Institute of Technology, 2016, Ph.D. Thesis.
  47. Hu Y, Li Y, He J, Liu T, Zhang K, Huang X, Kong L, Liu J, J. Environ. Manage., 226, 256 (2018)