화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.6, 640-646, December, 2021
열분해유 유래 피치로부터 이방성 미세구조 코크스 제조 및 특성 평가
Preparation and Characterization of Pitch based Coke with Anisotropic Microstructure Derived from Pyrolysis Fuel Oil
E-mail:,
초록
본 연구에서는 열분해유 유래 피치 합성 및 합성 피치로부터 이방성 미세구조를 갖는 코크스를 제조하고 그 특성을 평가하였다. 열분해유는 주로 방향족 고리가 2~3개로 구성된 분자로 이루어져 있어, 400 °C 이상의 온도에서 흡열반응인 축합중합으로 피치가 제조되었다. 코크스 반응기는 피치를 유동화 시키는 전처리 반응기, 코킹화 열에너지를 가해주는 preheater 및 코크스의 미세구조를 유도하는 코크스 드럼으로 구성되었으며, preheater의 온도를 400~490 °C로 조절하여 제조된 피치로부터 코크스를 제조하고 편광현미경, XRD 및 Raman spectroscopy로 특성을 평가하였다. Preheater의 온도가 460 °C에서 제조된 코크스는 이방성 미세조직이 flow 형태로 나타났으며, 높은 결정성으로 전기전 도성이 72.0 S/cm이였다. 그리고 전도성 탄소 재료인 Super-P보다 대략 2.2배 높은 전기전도성을 나타냈다.
In this study, pitch was synthesized using pyrolysis fuel oil (PFO). Coke with mesophase microstructure was then prepared from the synthesized pitch and its properties were evaluated. Pitch was synthesized by poly-condensation reaction, which is an endothermic reaction at a temperature above 400 °C because the PFO was mainly composed of molecules with two to three aromatic rings. The Coke reactor was composed of the pretreatment reactor, preheater for applying heat energy, and coke drum for inducing microstructure of coke. Coke was prepared from synthesized pitch by controlling the temperature of the preheater to 400~490 °C, and properties were evaluated by polarization microscope, XRD and Raman spectroscopy. The coke prepared at a preheater temperature of 460 °C identified flow anisotropic microstructure, and the electrical conductivity was 72.0 S/cm due to high crystallinity. And the flow anisotropic coke showed approximately 2.2 times higher electrical conductivity than that of Super-P, a conductive carbon material.
  1. Wu H, Cui Y, Nano Today, 7(5), 414 (2012)
  2. Gorlanov WS, Brichkin VN, Polyakov AA, Tsvetn. Met., 36 (2020).
  3. Gorlanov ES, Brichkin VN, Polyakov AA, Tsvetn. Met., 36 (2020).
  4. House PK, Saberian M, Briens CL, Berruti F, Chan E, Ind. Eng. Chem. Res., 43(18), 5663 (2004)
  5. Mochida I, Oyama T, Korai Y, Fei YQ, Fuel, 67, 1171 (1988)
  6. Halim HP, Im JS, Lee CW, Carbon Lett., 14, 152 (2013)
  7. Radenovic A, Terzic K, NAFTA, 3, 136 (2010)
  8. Scott AN, Thomas MDA, Aci. Mater. J., 104, 62 (2007)
  9. Anthony EJ, Iribarne AP, Iribarne JV, Fuel Technol., 88, 535 (2007)
  10. Park YD, Mochida I, Carbon, 27, 925 (1989)
  11. Eser S, Jekins RG, Derbyshire FJ, Malladi M, Carbon, 24, 77 (1986)
  12. Ellis PJ, Christopher AP, Tutorial: Delayed coking fundamentals, (1998).
  13. Mochida I, Korai Y, Oyama T, Nesumi Y, Todo Y, Carbon, 27, 359 (1989)
  14. Mochida I, Fei YQ, Korai Y, Fujimoto K, Yamashita R, Carbon, 27, 375 (1989)
  15. Mochida I, Oyama T, Korai Y, Carbon, 26, 49 (1988)
  16. Zhu YM, Zhao CL, Xu YL, Hu CS, Zhao XF, Energy Fuels, 33(4), 3456 (2019)
  17. Zhu YM, Hu CS, Xu YL, Zhao CL, Yin XT, Zhao XF, Energy Fuels, 34(2), 2126 (2020)
  18. Zhu YM, Liu HM, Xu YL, Hu CS, Zhao CL, Cheng JX, Chen XX, Zhao XF, Energy Fuels, 34(7), 8676 (2020)
  19. Li L, Lin X, Zhang Y, Dai J, Xu D, Wang Y, J. Anal. Appl. Pyrolysis, 150, 104889 (2020)
  20. Alexander IFE, X-ray Diffraction Methods in Polymer Science, John Wiley & Sons, Inc., (1969).
  21. Knight DS, White WB, J. Mater. Res., 4, 385 (1989)
  22. Park YD, Mochida I, Carbon, 27, 925 (1989)
  23. Mochida I, Shimizu K, Korai Y, Sakai Y, Fujiyama S, Toshima H, Hono T, Carbon, 30, 55 (1992)
  24. Smith JM, Van Ness HC, Abbott MM, Introduction to Chemical Engineering Thermodynamics. McGraw-Hill Education, (2004).