화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.1, 13-21, January, 2022
한 단계 합성 방법을 통한 카다놀 기반 바이오 폴리올 합성 및 이를 이용한 폴리우레탄의 제조 및 특성
Preparation and Characterization of Polyurethane Using Cardanol-Based Bio-Polyol Obtained from One-Pot Synthetic Method
E-mail:
초록
본 연구에서는 한 단계의 합성 방법을 통해 카다놀 기반 바이오 폴리올(CBP)을 합성하였다. CBP는 카다놀, 포름알데히드 수용액, 에탄올아민을 사용한 Mannich reaction을 통해 제조하였으며, 1H NMR과 FTIR 분석을 통해CBP가 성공적으로 합성되었음을 확인하였다. CBP와 헥사메틸렌 디이소시아네이트(HDI)를 우레탄 반응하여 바이오폴리우레탄(CBPU)을 제조하였으며, 폴리에틸렌글리콜(PEG)을 사용하여 제조한 석유계 폴리우레탄(PEGU)을 대조군으로 사용하여 TGA, UTM, 내화학성, 항균성에 대한 분석을 수행하였다. 이러한 분석 결과 CBPU는 CBP 고유의 화학적 분자 구조 차이를 바탕으로 대조군 PEGU와 비교하여 E. coli에 대한 높은 항균성과 우수한 내화학성 및 높은 인장강도를 가지고 있음을 확인하였다.
In this study, a cardanol based bio-polyol (CBP) was prepared via one-pot synthesis method. The synthesis of CBP was proceeded via Mannich reaction using cardanol, formaldehyde, and ethanolamine. The chemical structure of CBP was confirmed via 1H NMR and FTIR. Then, bio-polyurethane (CBPU) was prepared using CBP and hexamethylene diisocyanate (HDI). For the comparison experiments, polyethylene glycol (PEG), petroleum-based polyol, was applied to prepare a polyurethane (PEGU) as a control sample. From analyses results for TGA, UTM, chemical resistance test, and antibacterial test for CBPU and PEGU, it was found that CBPU showed higher tensile strength, chemical resistance, and antibacterial properties against E. coli compared to PEGU.
  1. Kim SH, Lee JH, Han HS, Macromol. Res., 28(10), 896 (2020)
  2. Filip D, Macocinschi D, Tuchilus CG, Zaltariov MF, Varganici CD, Macromol. Res., 29(9), 613 (2021)
  3. Zhang C, Wang HR, Zeng WX, Zhou QX, Ind. Eng. Chem. Res., 58(13), 5195 (2019)
  4. Tan SQ, Abraham T, Ference D, Macosko CW, Polymer, 52(13), 2840 (2011)
  5. Pawlik H, Prociak A, J. Polym. Environ., 20, 438 (2012)
  6. Bresolin D, Estrella AS, da Silva JR, Valerio A, Sayer C, de Araujo PH, de Oliveira D, Bioprocess Biosyst. Eng., 42, 213 (2019)
  7. Balgude D, Sabnis AS, J. Coat. Technol. Res., 11, 169 (2014)
  8. Lomonaco D, Santiago GMP, Ferreira YS, Arriaga AMC, Mazzetto SE, Mele G, Vasapollo G, Green Chem., 11, 31 (2009)
  9. Choi YS, Kim KH, Kim DG, Kim HJ, Cha SH, Lee JC, RSC Adv., 4, 41195 (2014)
  10. Kim SH, Kim SB, Cha SH, Polymer, 42, 736 (2018)
  11. Suresh KI, ACS Sustain. Chem. Eng., 1, 232 (2013)
  12. Bo C, Hu L, Jia P, Liang B, Zhou J, Zhou Y, RSC Adv., 5, 106651 (2015)
  13. Suresh KI, Kishanprasad VS, Ind. Eng. Chem. Res., 44(13), 4504 (2005)
  14. Mishra V, Desai J, Patel KI, Ind. Crop. Prod., 111, 165 (2018)
  15. Wang H, Zhou Q, ACS Sustain. Chem. Eng., 6, 12088 (2018)
  16. Feng J, Zhao H, Yue S, Liu S, ACS Sustain. Chem. Eng., 5, 3399 (2017)
  17. Chun BC, Cho TK, Chong MH, Chung YC, J. Mater. Sci., 42(21), 9045 (2007)
  18. Cocks LV, Van Rede C, Laboratory Handbook for Oil and Fat Analysts. Laboratory handbook for oil and fat analysts. 1966.
  19. Zhang Q, Yang P, Deng Y, Zhang C, Zhu R, Gu Y, RSC Adv., 5, 103203 (2015)
  20. Kathalewar M, Sabnis A, Prog. Org. Coat., 84, 79 (2015)
  21. Li SF, Zou T, Feng L, Liu XL, Tao M, J. Appl. Polym. Sci., 128(6), 4164 (2013)
  22. Mythili C, Retna AM, Gopalakrishnan S, Bull. Mat. Sci., 27, 235 (2004)
  23. Lapprand A, Boisson F, Delolme F, Mechin F, Pascault JP, Polym. Degrad. Stabil., 90, 363 (2005)
  24. Niyogi S, Sarkar S, Adhikari B, Indian J. Chem. Technol., 9(4), 330 (2002)
  25. Alam M, Ashraf S, Ray AR, Ahmad S, J. Polym. Environ., 18, 208 (2010)
  26. Dutta S, Karak N, Polym. Int., 55, 49 (2006)
  27. Chattopadhyay DK, Webster DC, Prog. Polym. Sci, 34, 1068 (2009)
  28. Aggarwal L, Thapliyal P, Karade S, Prog. Org. Coat., 59, 76 (2007)
  29. Desai SD, Patel JV, Sinha VK, Int. J. Adhes. Adhes., 23, 393 (2003)
  30. Ma TY, Hollander D, Krugliak P, Katz K, Gastroenterology, 98, 39 (1990)
  31. Kim SH, Kim SW, Cha SH, Polymer, 40, 1005 (2016)
  32. Zafar F, Ashraf SM, Ahmad S, Indian J. Chem. Technol., 2, 285 (2008)
  33. Elschenbroich C, J. Am. Chem. Soc., 128, 12029 (2006)
  34. Indumathi M, Rajarajeswari G, Int. J. Biol. Macromol., 124, 163 (2019)
  35. Zhang C, Madbouly SA, Kessler MR, ACS Appl. Mater. Interfaces, 7, 1226 (2015)
  36. Yoo SR, Lee HS, Seo SW, Polymer, 21, 467 (1997)
  37. Korley LTJ, Pate BD, Thomas EL, Hammond PT, Polymer, 47(9), 3073 (2006)
  38. Yin F, Chen Q, Lin J, Deng Y, Mao X, J. Polym. Res., 21, 411 (2014)
  39. Kil HB, et al., Proceedings of the 39th KSPE Fall Conference on Aerospace Engineering Topics, Yeosu-si, Korea, November 22-23, 201.
  40. Ginzburg VV, Bicerano J, Christenson CP, Schrock AK, Patashinski AZ, J. Polym. Sci. B: Polym. Phys., 45(16), 2123 (2007)
  41. Xu Y, Burton S, Kim C, Sismour E, Food Sci. Nur, 4, 125 (2016)
  42. Choi YS, Kim NK, Kang H, Jang HK, Noh M, Kim J, Shon DJ, Kim BS, Lee JC, RSC Adv, 7, 38091 (2017)
  43. Choi YS, Kang H, Kim DG, Cha SH, Lee JC, ACS Appl. Mater. Interfaces, 6, 21297 (2014)
  44. Nguyen TK, Lam SJ, Ho KK, Kumar N, Qiao GG, Egan s, Boyer C, Wong EH, ACS Infect. Dis., 3, 237 (2017)