화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.107, 456-465, March, 2022
Development of correlations between deasphalted oil yield and Hansen solubility parameters of heavy oil SARA fractions for solvent deasphalting extraction
E-mail:,
Solvent deasphalting (SDA) is a heavy oil upgrading process that selectively extracts deasphalted oil (DAO) and rejects asphaltenes. In this study, a quantitative analysis was conducted to predict DAO yields in the SDA process using relative energy difference (RED); the RED was calculated from Hansen solubility parameters (HSPs) of the feedstock and extraction solvent along with the extraction conditions, such as temperature and solvent-to-oil ratio (SOR). SDA extraction experiments were performed in a continuous bench-scale unit using vacuum residue (VR) and a mixture of bunker C fuel oil (BC) and VR as feedstocks. The HSPs of saturate, aromatic, resin, and asphaltene fractions derived from the VR and BC were measured using solubility tests, wherein the fractions were dissolved in 37 different solvents. Finally, simple and accurate correlations between the DAO yield and corresponding modified RED were acquired and used to explain the effects of temperature and SOR on the DAO yield.
  1. OPEC, World Oil Outlook 2040, 2017.
  2. Gray MR, Upgrading Oilsands Bitumen and Heavy Oil, The University of Alberta Press, 2015.
  3. Sahu R, Song BJ, Im JS, Jeon YP, Lee CW, J. Ind. Eng. Chem., 27, 12 (2015)
  4. Nazarova G, Ivashkina E, Shafran T, Belinskaya N, MATEC Web Conf., 85, 10010 (2016)
  5. Goual L, Firoozabadi A, AIChE J., 50, 470 (2004)
  6. Castaneda LC, Munoz JAD, Ancheyta J, Fuel, 100, 110 (2012)
  7. Go KS, Kwon EH, Kim KH, Nho NS, Lee KB, Energy Fuels, 30, 2076 (2016)
  8. Shah A, Fishwick R, Wood J, Leeke G, Rigby S, Greaves M, Energy Environ. Sci., 3, 700 (2010)
  9. Mohamed RS, Loh W, Ramos ACS, Delgado CC, Almeida VR, Pet. Sci. Technol., 17, 877 (1999)
  10. Speight JG, Heavy and Extra-heavy Oil Upgrading Technologies, Gulf Professional Publishing, 2013.
  11. Carrillo JA, Corredor LM, Fuel Process. Technol., 109, 156 (2013)
  12. Cossey HL, Guigard SE, Underwood E, Stiver WH, McMillan J, Bhattacharya S, J. Supercrit. Fluids, 154 (2019)
  13. Morantes LR, Percebom AM, Mejia-Ospino E, Fuel, 241, 542 (2019)
  14. Patil PD, Kozminski M, Peterson J, Fuel, 235, 17 (2019)
  15. Sun S, Meng F, Ind. Eng. Chem. Res., 60, 652 (2021)
  16. Magomedov RN, Pripakhaylo AV, Dzhumamukhamedov DS, Maryutina TA, J. CO2 Util., 40 (2020)
  17. Al-Sabawi M, Seth D, De Bruijn T, Fuel Process. Technol., 92, 1929 (2011)
  18. Long J, Shen B, Ling H, Zhao J, Lu J, Ind. Eng. Chem. Res., 50, 11259 (2011)
  19. Lee JM, Shin S, Ahn S, Chun JH, Lee KB, Mun S, Jeon SG, Na JG, Nho NS, Fuel Process. Technol., 119, 204 (2014)
  20. Ahn S, Shin S, Im SI, Lee KB, Nho NS, Korean J. Chem. Eng., 33, 265 (2016)
  21. Im SI, Shin S, Park JW, Yoon HJ, Go KS, Nho NS, Lee KB, Chem. Eng. J., 331, 389 (2018)
  22. Zhao Y, Wei F, Fuel Process. Technol., 9, 933 (2008)
  23. Jolley JE, Hildebrand JH, J. Am. Chem. Soc., 80, 1050 (1958)
  24. Hansen CM, The three dimensional solubility parameter, Danish Technical Press, 1967.
  25. Louwerse MJ, Maldonado A, Rousseau S, Moreau-Masselon C, Roux B, Rothenberg G, ChemPhysChem, 18, 2999 (2017)
  26. Williams LL, Rubin JB, Edwards HW, Ind. Eng. Chem. Res., 43, 4967 (2004)
  27. Redelius P, Energy Fuels, 18, 1087 (2004)
  28. Hansen CM, Hansen Solubility Parameters: A User's Handbook, 2nd ed., CRC Press, 2007.
  29. Sato T, Araki S, Morimoto M, Tanaka R, Yamamoto H, Energy Fuels, 28, 891 (2014)
  30. Acevedo S, Castro A, Vasquez E, Marcano F, Ranaudo MA, Energy Fuels, 24, 5921 (2010)
  31. Mutelet F, Ekulu G, Solimando R, Rogalski M, Energy Fuels, 18, 667 (2004)
  32. Hansen CM, A handy HSP excel spreadsheet., (accessed 22 June 2021).
  33. Cao F, Jiang D, Li W, Du P, Yang G, Ying W, Chem. Eng. Process. Process Intensif., 49, 91 (2010)
  34. Onukwuli OD, Onyia IM, Ekumankama EO, Okeke SI, Pet. Sci. Technol., 17, 37 (1999)
  35. Leon AY, Parra M, Grosso JL, CTF Cienc Tecnol Futuro, 3, 129 (2008)
  36. Akmaz S, Iscan O, Gurkaynak MA, Yasar M, Pet. Sci. Technol., 29, 160 (2011)
  37. Fedors RF, Polym. Eng. Sci., 14, 147 (1974)
  38. Fan T, Buckley JS, Energy Fuels, 16, 1571 (2002)
  39. Bissada KKA, Tan J, Szymczyk E, Darnell M, Mei M, Org. Geochem., 95, 21 (2016)
  40. Jiang G, Lv D, Zhang F, Ning A, Gao G, Ren Y, Wang Z, Sep. Purif. Technol., 272 (2021)
  41. He H, Wan Y, Sun R, Sha J, Zhang P, Li Y, Li T, Ren B, J. Mol. Liq., 300 (2020)
  42. Esteras-Saz J, de la Iglesia O, Pena C, Escudero A, Tellez C, Coronas J, Sep. Purif. Technol., 270 (2021)
  43. Beltran AB, Nisola GM, Vivas EL, Cho W, Chung WJ, J. Ind. Eng. Chem., 19, 182 (2013)