화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.60, No.2, 277-281, May, 2022
Visualization Study on Microscale Wetting Dynamics of Water Droplets on Dry and Wet Hydrophilic Membranes
E-mail:, ,
The wetting dynamics of water droplets dispensed on the surface of dry and wet hydrophilic membranes were investigated experimentally from a microscale point of view. By using a high-speed, white-beam x-ray microimaging (WXMI) synchrotron, consecutive images displaying the dynamic motions of the droplets were acquired. Through analyzing the characteristics observed, it was found that the dry hydrophilic membrane showed local hydrophobicity at a certain point during the absorption process with apparent contact angles greater than 90. While on the other hand, the apparent contact angles of a water droplet absorbing into the wet membrane remained less than 90 and showed total hydrophilicity. The observations and interpretation of characteristics that affect the contact, wetting, recoiling, and dynamic behaviors of droplets are significant for controlling liquid droplet impingement in a desired manner.
  1. Wang MJ, Lin FH, Ong JY, Lin SY, Colloids Surf. A: Physicochem. Eng. Asp., 339(1-3), 224 (2009)
  2. Rein M, “Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces,” Fluid Dynamic Research, 1993.
  3. Modaressi H, Garnier G, Langmuir, 18(3), 642 (2002)
  4. Modak CD, Kumar A, Tripathy A, Sen P, Nat Commun, 11(1), 4327 (2020)
  5. Kwon KS, Kim HS, Choi M, Rev. Sci. Instrum., 87(3), 035101 (2016)
  6. Krainer S, Smit C, Hirn U, Rsc Adv, 9(54), 31708 (2019)
  7. Li Z, Kong Q, Ma X, Zang D, Guan X, Ren X, Nanoscale, 9(24), 8249 (2017)
  8. Wijshoff H, Curr. Opin. Colloid Interface Sci., 36, 20 (2018)
  9. Gao YS, Jung SW, Pan L, Acs Omega, 4(15), 16674 (2019)
  10. Li X, Ma X, Lan Z, AIChE J., 55(8), 1983 (2009)
  11. Shen J, Liburdy JA, Pence DV, Narayanan V, J. Phys. Condens. Matter, 21(46), 464133 (2009)
  12. Verplanck N, Coffinier Y, Thomy V, Boukherroub R, Nano. Res. Lett., 2(12), 577 (2007)
  13. Larher Y, Langmuir, 13(26), 7299 (1997)
  14. Tran PA, Webster TJ, Int. J. Nanomed, 8, 2001 (2013)
  15. Nakajima A, Nakajima A, NPG Asia Mater. NPG Asia Materials, 3, 49 (2011)
  16. Yonemoto Y, Kunugi T, Sci. World J., 2014, 647694 (2014)
  17. Banerjee S, “Simple Derivation of Young, Wenzel and Cassie- Baxter Equations and its Interpretations,” arXiv preprint arXiv: 0808.1460 (2008).
  18. Whyman G, Bormashenko E, Stein T, Chem. Phys. Lett., 450(4-6), 355 (2008)
  19. Huang XM, Gates I, Sci Rep-Uk, 10(1) (2020)
  20. Ferrari M, J. Adhes. Sci. Technol., 28(8-9), 791 (2014)
  21. Pandey PR, Roy S, J. Phys. Chem. Lett., 4(21), 3692 (2013)
  22. Chen L, Li Z, Phys. Rev. E, 82(1-2), 016308 (2010)
  23. Kim S, Choi H, Polycarpou AA, Liang H, Friction, 4(3), 249 (2016)
  24. Bae KJ, Yao WH, He YL, Cho YR, Korean J. Met. Mater., 55(9), 624 (2017)
  25. Bormashenko E, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368(1929), 4695 (2010)
  26. Li Y, Li J, Liu L, Yan Y, Zhang Q, Zhang N, He L, Liu Y, Zhang X, Tian D, Leng J, Jiang L, Adv. Sci., 7(18), 2000772 (2020)
  27. Shetabivash H, Dolatabadi A, AIP Advances, 7(9), 095003 (2017)
  28. Quetzeri-Santiago MA, Castrejón-Pita AA, Castrejón-Pita JR, Sci Rep-Uk, 9(1), 15030 (2019)
  29. Kannangara D, Zhang H, Shen W, Colloids Surf. A: Physicochem. Eng. Asp., 280(1-3), 203 (2006)
  30. Lee K, Ivanova N, Starov V, Hilal N, Dutschk V, Adv. Colloid Interface Sci., 144(1-2), 54 (2008)