화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.110, 120-130, June, 2022
Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries
E-mail:,
Since the layered oxide LiCoO2 as the cathode material for commercial Li ion batteries, especially, nickelrich layered oxide cathode materials are consolidating their status as the cathode material of choice and enabling a significant success of the passenger electric vehicle industry. Generally, cobalt in cathodes has been considered necessary in enhancing electrochemical performance. However, they are still facing critical challenges in further commercialization. For instance, cobalt caused more severe structural degradation and capacity degradation at high potential. Additionally, it triggered O2 and heat release, which eventually cause the interfacial instability and thermal instability of the cathode materials. Prior studies also confirmed that cobalt plays double-edged roles in cathodes, and questioned its necessity. Meanwhile, not only is it facing a roadblock caused by high-cost restrictions, but more importantly, 50% of world mine production originates from copper-cobalt ore in the Democratic Republic of the Congo (DRC), where geopolitical instability and harsh working conditions could halt cobalt exports. Therefore, many studies have explored the possibility of cobalt-free materials. This review shed new lights on understanding the role of cobalt and reveals the perspectives of technical challenges in current state by the practical aspect for cobalt-free cathode materials, thereby helping to advance the future development of next-generation low-cost and long-calendar-life batteries.
  1. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB, Mater. Res. Bull., 15, 783 (1980)
  2. Whittingham MS, Chem. Rev., 104, 4271 (2004)
  3. Manthiram A, Nat. Commun., 11, 1550 (2020)
  4. Manthiram A, Song B, Li W, Energy Storage Mater., 6, 125 (2017)
  5. Wang LF, Geng MM, Ding XN, Fang C, Zhang Y, Shi SS, Zheng Y, Yang K, Zhan C, Wang XD, Int. J. Miner. Metall. Mater., 28, 538 (2021)
  6. Kim Y, Seong WM, Manthiram A, Energy Storage Mater., 34, 250 (2021)
  7. Ramasamy H, Sinha S, Park J, Gong M, Aravindan V, Heo J, Lee YS, J. Electrochem. Sci. Technol., 10, 196 (2019)
  8. Divya ML, Lee YS, Aravindan V, Batteries Supercaps, 4, 671 (2021)
  9. Ahmed S, Pokle A, Schweidler S, Beyer A, Bianchini M, Walther F, Mazilkin A, Hartmann P, Brezesinski T, Janek J, Volz K, ACS Nano, 13, 10694 (2019)
  10. Park KJ, Jung HG, Kuo LY, Kaghazchi P, Yoon CS, Sun YK, Adv. Energy Mater., 8, 1801202 (2018)
  11. Jung SK, Gwon H, Hong J, Park KY, Seo DH, Kim H, Hyun J, Yang W, Kang K, Adv. Energy Mater., 4, 1300787 (2014)
  12. Cheng KL, Mu DB, Wu BR, Wang L, Jiang Y, Wang R, Int. J. Miner. Metall. Mater., 24, 342 (2017)
  13. Li Y, Lai F, Zhang X, Wang H, Chen Z, He X, Li Q, J. Taiwan Inst. Chem. E., 102, 225 (2019)
  14. Lei Y, Ai J, Yang S, Lai C, Xu Q, J. Taiwan Inst. Chem. E., 97, 255 (2019)
  15. Jiang H, Li J, Lei Y, Chen Y, Lai C, Shi L, Peng C, J. Taiwan Inst. Chem. E., 114, 331 (2020)
  16. Wang HY, Cheng X, Li XF, Pan JM, Hu JH, Int. J. Miner. Metall. Mater., 28, 305 (2021)
  17. Sasaki T, Godbole V, Takeuchi Y, Ukyo Y, Novak P, J. Electrochem. Soc., 158, A1214 (2011)
  18. Subburaj T, Jo YN, Prasanna K, Kim KJ, Lee CW, J. Ind. Eng. Chem., 51, 223 (2017)
  19. Kang K, Ying SM, Bréger J, Clare PG, Ceder G, Science, 311, 977 (2006)
  20. Seong WM, Yoon K, Lee MH, Jung SK, Kang K, Nano Lett., 19, 29 (2019)
  21. Noh HJ, Youn S, Yoon CS, Sun YK, J. Power Sources, 233, 121 (2013)
  22. Sun YK, Lee DJ, Lee YJ, Chen ZH, Myung ST, A.C.S. Appl. Mater. Interfaces, 5, 11434 (2013)
  23. Li W, Erickson EM, Manthiram A, Nat. Energy, 5, 26 (2020)
  24. Liu T, Yu L, Liu J, Lu J, Bi X, Dai A, Li M, Li M, Hu Z, Ma L, Luo D, Zheng J, Wu T, Ren Y, Wen J, Pan F, Amine K, Nat. Energy, 6, 277 (2021)
  25. Li M, Lu J, Science, 367, 979 (2020)
  26. Goodenough JB, Park KS, J. Am. Chem. Soc., 135, 1167 (2013)
  27. Sharma PK, Electrochem. Solid State Lett., 2, 494 (1999)
  28. Kim UH, Park NY, Park GT, Kim H, Yoon CS, Sun YK, Energy Storage Mater., 33, 399 (2020)
  29. Kim JH, Kim SJ, Yuk T, Kim J, Yoon CS, Sun YK, ACS Energy Lett., 3, 3002 (2018)
  30. Liu T, Yu L, Lu J, Zhou T, Huang X, Cai Z, Dai A, Gim J, Ren Y, Xiao X, Holt MV, Chu YS, Arslan I, Wen J, Amine K, Nat. Commun., 12, 6024 (2021)
  31. Tian C, Nordlund D, Xin HL, Xu Y, Liu Y, Sokaras D, Lin F, Doeff MM, J. Electrochem. Soc., 165, A696 (2018)
  32. Wandt J, Freiberg ATS, Ogrodnik A, Gasteiger HA, Mater. Today, 21, 825 (2018)
  33. Lin F, Markus IM, Nordlund D, Weng TC, Asta MD, Xin HL, Doeff MM, Nat. Commun., 5, 3529 (2014)
  34. Aurbach D, J. Electrochem. Soc., 136, 1611 (1989)
  35. Myung ST, Izumi K, Komaba S, Sun YK, Yashiro H, Kumagai N, Chem. Mater., 17, 3695 (2005)
  36. Hu B, Geng F, Shen M, Zhao C, Qiu Q, Lin Y, Chen C, Wen W, Zheng S, Hu X, Li C, Hu B, J. Power Sources, 516 (2021)
  37. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X, Energy Storage Mater., 10, 246 (2018)
  38. He Y, Li Y, Yao N, Li J, Li W, Wang Z, Ceram. Int., 46, 7625 (2020)
  39. Jia X, Yan M, Zhou Z, Chen X, Yao C, Li D, Chen D, Chen Y, Electrochim. Acta, 254, 50 (2017)
  40. Wang J, Chen T, Rare Metals, 31, 397 (2012)
  41. Bak SM, Hu E, Zhou Y, Yu X, Senanayake SD, Cho SJ, Kim KB, Chung KY, Yang XQ, Nam KW, ACS Appl. Mater. Interfaces, 6, 22594 (2014)
  42. Geng L, Liu J, Wood DL, Qin Y, Lu W, Jafta CJ, Bai Y, Belharouak I, ACS Appl. Energy Mater., 3, 7058 (2020)
  43. Lee E, Muhammad S, Kim T, Kim H, Lee W, Yoon WS, Adv. Sci., 7, 1902413 (2020)
  44. Nam KW, Bak SM, Hu E, Yu X, Zhou Y, Wang X, Wu L, Zhu Y, Chung KY, Yang XQ, Adv. Funct. Mater., 23, 1047 (2013)
  45. Reed J, Ceder G, Chem. Rev., 104, 4513 (2004)
  46. Zheng JX, Liu TC, Hu ZX, Wei Y, Song XH, Ren Y, Wang WD, Rao MM, Lin Y, Chen ZH, Lu J, Wang CM, Amine K, Pan F, J. Am. Chem. Soc., 138, 13326 (2016)
  47. Li WD, Liu XM, Celio H, Smith P, Dolocan A, Chi MF, Manthiram A, Adv. Energy Mater., 8, 1703154 (2018)
  48. Xie Q, Li WD, Manthiram A, Chem. Mater., 31, 938 (2019)
  49. Ho VC, Jeong S, Yim T, Mun J, J. Power Sources, 450 (2020)
  50. Jang SH, Yim T, ChemPhysChem, 18, 3402 (2017)
  51. Yang HP, Wu HH, Ge MY, Li LJ, Yuan YF, Yao Q, Chen J, Xia LF, Zheng JM, Chen ZY, Duan J, Kisslinger K, Zeng XC, Adv. Funct. Mater., 29, 1808825 (2019)
  52. Liu K, Zhang QQ, Dai S, Li W, Liu XJ, Ding F, Zhang JL, ACS Appl. Mater. Interfaces, 10, 34153 (2018)
  53. Ran Q, Zhao H, Shu X, Hu Y, Hao S, Shen Q, Liu W, Liu J, Zhang M, Li H, Liu X, ACS Appl. Energy Mater., 2, 3120 (2019)
  54. Kim JG, Noh Y, Kim Y, J. Ind. Eng. Chem., in press. (2021)
  55. Li J, Camardese J, Shunmugasundaram R, Glazier S, Lu ZH, Dahn ZR, Chem. Mater., 27, 3366 (2015)
  56. Makhonina EV, Maslennikova LS, Volkov VV, Medvedeva AE, Rumyantsev AM, Koshtyal YM, Maximov MY, Pervov VS, Eremenko IL, Appl. Surf. Sci., 474, 25 (2019)
  57. Park KJ, Choi MJ, Maglia F, Kim SJ, Kim KH, Yoon CS, Sun YK, Adv. Energy Mater., 8, 1703612 (2018)
  58. Ohzuku T, Ueda A, Nagayama M, J. Electrochem. Soc., 140, 1862 (1993)
  59. Arai H, Okada S, Ohtsuka H, Ichimura M, Yamaki J, Solid State Ion., 80, 261 (1995)
  60. Hirano A, Kanno R, Kawamoto Y, Takeda Y, Yamaura K, Takano M, Ohyama K, Ohashi M, Yamaguchi Y, Solid State Ion., 78, 123 (1995)
  61. Yamada S, Fujiwara M, Kanda M, J. Power Sources, 54, 209 (1995)
  62. Yoon CS, Jun DW, Myung ST, Sun YK, ACS Energy Lett., 2, 1150 (2017)
  63. Kim UH, Lee EJ, Yoon CS, Myung ST, Sun YK, Adv. Energy Mater., 6, 1601417 (2016)
  64. Lim JM, Hwang T, Kim D, Park MS, Cho K, Cho M, Sci. Rep.-UK, 7, 39669 (2017)
  65. Abraham DP, Twesten RD, Balasubramanian M, Petrov I, McBreen J, Amine K, Electrochem. Commun., 4, 620 (2002)
  66. Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K, J. Power Sources, 260, 50 (2014)
  67. Zheng S, Huang R, Makimura Y, Ukyo Y, Fisher CAJ, Hirayama T, Ikuhara Y, J. Electrochem. Soc., 158, A357 (2011)
  68. Xiao J, Chernova NA, Whittingham MS, Chem. Mater., 20, 7454 (2008)
  69. Xiao J, Chernova NA, Whittingham MS, Chem. Mater., 22, 1180 (2010)
  70. Zhou F, Zhao XM, Smith AJ, Dahn JR, J. Electrochem. Soc., 157, A399 (2010)
  71. Yi TF, Li YM, Yang SY, Zhu YR, Xie Y, ACS Appl. Mater. Interfaces, 8, 32349 (2016)
  72. Li L, Yu J, Darbar D, Self EC, Wang D, Nanda J, Bhattacharya I, Wang C, ACS Energy Lett., 4, 2540 (2019)
  73. Li HY, Cormier M, Zhang N, Inglis J, Li J, Dahn JR, J. Electrochem. Soc., 166, A429 (2019)
  74. Kim JW, Kim DH, Oh DY, Lee H, Kim JH, Lee JH, Jung YS, J. Power Sources, 274, 1254 (2015)
  75. Hu G, Shi Y, Fan J, Cao Y, Peng Z, Zhang Y, Zhu F, Sun Q, Xue Z, Liu Y, Du K, Electrochim. Acta, 364 (2020)
  76. Ho VC, Jeong S, Yim T, Mun J, Data Brief, 30 (2020)
  77. Fan Q, Lin K, Yang S, Guan S, Chen J, Feng S, Liu J, Liu L, Li J, Shi Z, J. Power Sources, 477 (2020)
  78. Huang Y, Yao X, Hu X, Han Q, Wang S, Ding LX, Wang H, Appl. Surf. Sci., 489, 913 (2019)
  79. Kim H, Kim MG, Jeong HY, Nam H, Cho J, Nano Lett., 15, 2111 (2015)
  80. Xu YD, Xiang W, Wu ZG, Xu CL, Li YC, Guo XD, Lv GP, Peng X, Zhong BH, Electrochim. Acta, 268, 358 (2018)
  81. Huang B, Li XH, Wang ZX, Guo HJ, Mater. Lett., 131, 210 (2014)
  82. Wang L, Wang R, Wang J, Xu R, Wang X, Zhan C, ACS Appl. Mater. Interfaces, 13, 8324 (2021)
  83. Tao S, Kong F, Wu C, Su X, Xiang T, Chen S, Hou H, Zhang L, Fang Y, Wang Z, Chu W, Qian B, Song L, J. Alloy. Compd., 705, 413 (2017)
  84. Zhang N, Zaker N, Li H, Liu A, Inglis J, Jing L, Li J, Li Y, Botton GA, Dahn JR, Chem. Mater., 31, 10150 (2019)