화학공학소재연구정보센터
Polymer(Korea), Vol.22, No.4, 633-641, July, 1998
유리섬유 강화된 폴리프로필렌 복합재료에 관한 연구
A Study on the Glass Fiber Reinforced Polypropylene Composites
초록
본 연구에서는 고점성 열가소성 수지를 직접 함침 및 코팅시켜 연속섬유형 복합재료를 제조할 수 있는 인발 수지함침 장치를 개발하여 이를 이용 섬유강화 폴리프로필렌 복합재료를 제조하였다. 인발 수지함침 장치로 제조한 폴리프로필렌 복합재료의 형태학적 특성 및 기계적 특성을 이축압출장치로 제조한 폴리프로필렌 복합재료와 비교한 결과 인발 수지함침 장치로 제조한 복합재료가 섬유의 분산성이나 장섬유에 의한 보강 효과가 크게 향상되어 기계적 물성이 우수하였다. 또한, 유리섬유와 기지재간의 계면 결합력을 개선시키기 위해 폴리프로필렌 수지에 maleic anhydride(MA)를 도입하여 개질된 PP-g-MA를 상용화제로 첨가한 복합재료 제조 연구를 수행하였으며, 그 결과 PP-g-MA를 첨가한 복합재료는 유리섬유와 기지재인 폴리프로필렌간의 표면 결합력이 향상되어 기계적 특성이 크게 증가됨을 확인할 수 있었다.
In order to investigate the effects of different polymer processing methods on the mechanical properties of fiber reinforced thermoplastic polymers, PP/GF composites have been prepared using a pultrusion resin impregnation apparatus developed in our laboratory and compared these with the composites prepared using a twin-screw extruder. The compos ites manufactured by pultrusion resin impregnation apparatus were superior to short fiber reinforced plastics prepared by extrusion with regard to various mechanical properties. The reason for the superiority was ascribed to the reinforcement of resin by long fibers and to high dispersion of the fibers in the matrix. To improve adhesions of fiber surfaces and polymer matrix, maleic anhydride(MA) has been introduced in the PP matrix chain as a compatibilizer. It was found that MA did indeed improve surface adhesion between fibers and polymer matrix and that, as a result, various mechanical properties were markedly enhanced.
  1. Bader MG, Bowyer WH, Composites, 4, 150 (1973) 
  2. Crosby JM, Drye TR, J. Reinf. Plast. Compos., 6, 162 (1987)
  3. Bailey RS, Davies M, Moore DR, Composites, 20, 453 (1989) 
  4. Ramsteiner F, Theyson R, Composites, 10, 111 (1979) 
  5. Abrate S, Rubber Chem. Technol., 59, 384 (1985)
  6. Denault J, Vu-Khanh T, Polym. Compos., 9, 361 (1988)
  7. Carling MJ, Williams JG, Polym. Compos., 11, 307 (1990) 
  8. Yu Z, Brisson J, Ait-Kadi A, Polym. Compos., 15, 64 (1994) 
  9. Vaxman A, Narkis M, Polym. Compos., 10, 78 (1989) 
  10. Hooley CJ, Maxwell J, Plast. Rubber Proc. Appl., 5, 19 (1985)
  11. Sternfield A, Mol. Plast. Int., Jan., 36 (1987)
  12. Mittal RK, Gupta VB, J. Mater. Sci., 17, 3179 (1982) 
  13. Chonielewski C, Jayaraman K, Petty CA, Polym. Compos., 14, 257 (1993) 
  14. Templeton PA, J. Reinf. Plast. Compos., 9, 210 (1990)
  15. Vincent M, Agassant JF, "Two-Phase Polymer-Systems," L.A. Utracki, ed., Hanser Publishers, New York (1991)
  16. McNally D, Freed WT, Shaner JR, Sell JW, Polym. Eng. Sci., 18, 396 (1978) 
  17. Kelly A, Tyson WR, J. Mech. Phys. Solid, 13, 329 (1965) 
  18. Yoon BS, Lee SH, Suh MH, Polym. Compos., in press
  19. Ide F, Kamade K, Hasegawa A, Kobunshi Kagaku, 25, 107 (1968)
  20. Bratawidjaja AS, Gitopadmoyo I, Watanabe Y, Hatakeyama T, J. Appl. Polym. Sci., 37, 1141 (1989) 
  21. Gibson AG, "Polypropylene," J. Karger-Kocsis, ed., Chapman & Hall, London (1995)
  22. Benderly D, Siegmann A, Narkis M, Polym. Compos., 17, 343 (1996) 
  23. Xanthos M, Grenci J, Patel SH, Patel A, Jacob C, Dey S, Dagli SS, Polym. Compos., 16, 204 (1995) 
  24. Sjogren BA, Berglund LA, Polym. Compos., 18, 1 (1997) 
  25. Joshi M, Maiti SN, Misra A, Mittal RK, Polym. Compos., 15, 349 (1994) 
  26. Sova N, Peizbaur Z, J. Appl. Polym. Sci., 38, 511 (1989)