화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.11, No.4, 275-278, December, 1999
Soft polymeric materials near the transition from liquid to solid state
E-mail:
Soft polymeric materials have gained importance in recent years, namely in food, pharmaceuticals, photographic media, adhesives, vibration dampeners and superabsorbers (to name a few), but also as intermediates for selforganization of molecules or supramolecules into long range order. Many of these soft materials are close to their gel point, i.e. they are liquids just before reaching their gel point or they are solids which have barely passed the gel point. New rheological methods need to be developed for the understanding of these soft materials; the typical liquid properties (viscosity) and typical solid properties (modulus) are not applicable since they diverge at the gel point. This will be discussed in the following. Fortunately, chemical gelation experiments with model polymers has given insight into the behavior at the gel point (Winter and Mours, 1997). This knowledge of the critical gel provides us with a reference state when working with soft polymeric materials. Chemical gels will serve as model materials for the exploration of physical gels. A novel method for detecting the gel point has been proposed: the instant of liquid-to-solid transition(gel point) is marked by the crossover of the normalized dynamic moduli G'/cos(n(c)π/2) and G"/sin(n(c)π/2).
  1. Baumgartel M, Schausberger A, Winter HH, Rheol. Acta, 29, 400 (1990) 
  2. Chambon F, Winter HH, Polym. Bull., 13, 499 (1985)
  3. De Gennes PG, J. Chem. Phys., 55, 572 (1971) 
  4. De Rosa ME, Mours M, Winter HH, Polym. Gels Networks, 5, 69 (1997) 
  5. Ferry JD, Viscoelastic Properties of Polymers, 3rd ed. Wiley, New York (1980)
  6. Flory PJ, J. Am. Chem. Soc., 63, 3083 (1941) 
  7. Flory PJ, J. Phys. Chem., 46, 132 (1942) 
  8. Gelfer MY, Winter HH, Macromolecules, 32(26), 8974 (1999) 
  9. Holly EE, Venkataraman SK, Chambon F, Winter HH, J. Non-Newton. Fluid Mech., 27, 17 (1988) 
  10. Horst RH, Winter HH, Macromolecules, 33(1), 130 (2000) 
  11. Izuka A, Winter HH, Hashimoto T, Macromolecules, 27(23), 6883 (1994) 
  12. Keller A, Pedemonte E, Willmouth FM, Nature, 225, 538 (1970) 
  13. Larson RG, Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston (1988)
  14. Martin JE, Wilcoxon JP, Phys. Rev. Lett., 61, 373 (1988) 
  15. Mours M, Winter HH, Macromolecules, 29(22), 7221 (1996) 
  16. Pogodina NV, Winter HH, Macromolecules, 31(23), 8164 (1998) 
  17. Pogodina NV, Winter HH, Srinivas S, J. Polym. Sci. B: Polym. Phys., 37(24), 3512 (1999) 
  18. Sakamoto N, Hashimoto T, Macromolecules (1998)
  19. Schosseler S, Leiber L, Phys. Lett., 45, 501 (1984)
  20. Soenen H, Berghmans H, Winter HH, Overbergh N, Polymer, 38(22), 5653 (1997) 
  21. Stauffer D, Introduction to Percolation Theory, Taylor and Francis, Philadelphia, PA (1985)
  22. Stockmayer WH, J. Chem. Phys., 11, 45 (1943) 
  23. te Nijenhuis K, Adv. Polym. Sci., 130, 1 (1997)
  24. Tung CY, Dynes PJ, J. Appl. Polym. Sci., 27, 569 (1982) 
  25. Venkataraman SK, Winter HH, Rheol. Acta, 29, 423 (1990) 
  26. Vilgis T, Winter HH, Prog. Colloid Interface Sci., 26, 494 (1988)
  27. Winter HH, Chambon F, J. Rheol., 30, 367 (1986) 
  28. Winter HH, Chambon F, J. Rheol., 31, 683 (1987) 
  29. Winter HH, Mours M, Adv. Polym. Sci., 134, 165 (1997)