화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.8, 807-815, December, 2000
고성능 막 크로마토그래피에 의한 생고분자의 분리기술
Separation Technology of Biopolymers by High-Performance Membrane Chromatography
E-mail:
초록
막과 크로마토그래피의 특징을 이용한 혼합공정인 HPMC는 최근 주목을 받고 있는 새로운 크로마토그래피 기술이다. 기존의 크로마토그래피에 비해서 빠른 분리시간, 높은 분리도, 낮은 압력에서의 조업과 조작의 간편함의 여러 가지 장점을 갖고 있다. 막의 미세공을 통하여 대류 물질전달이 일어나고 확산이동성의 차이와 불균일한 표면 작용에너지에 의하여 분리가 된다. 막의 지지체에는 셀룰로오즈, 폴리설폰, 폴리아미드, 복합막 등이 상용화되었고 이러한 지지체의 효과적인 분리를 위하여 리간드를 결합한다. 리간드를 결합하는 방법은 coupling과 spacer arm 방법이 있다. 분리 메카니즘은 친화력, 이온교환, 소수성 상호작용과 역상, 복합방법이 있고 이에 따른 막의 형태도 여러 가지가 있다. HPMC는 단백질과 같은 생고분자 물질의 분리 및 정제, 유전 및 생명공학분야의 제품 등에 응용되고 있다.
High-performance membrane chromatography (HPMC), a hybrid system implemented with both the characteristics of membrane and chromatography, is a novel chromatographic technology which draws much attention recently. The combined system has many advantages; fast separation time, high resolution, low pressure, and convenient operation. Convective mass transfer occurs through micropores in membrane, so the mixtures are resolved by the difference of diffusion transfer and differential surface interaction energy. The versatile materials for membrane support such as cellulose, polysulphone, polyamide and composite membrane are now commercially available. Normally it is combined with ligands for an effective separation. The methods of combining ligands on the surface of support are application of couplings and spacer arms. Separation mechanism includes affinity, ion exchange, hydrophobic interaction, reverse phase, and mixed mode. The types of membranes are changed with the mechanism involved. The HPMC is mainly utilized for protein separation and purification of biopolymers, and extended further to downstream processing of biological products from genetics.
  1. Row KH, "Principles and Applications of Liquid Chromatography," 1, Inha Univ. (1999)
  2. Zeng XF, Ruckenstein E, Biotechnol. Prog., 15(6), 1003 (1999) 
  3. Podgornik A, Tennikova T, Anal. Chem., 71, 2986 (1999) 
  4. Dubinina NI, Kurenbin OI, Tennikova TB, J. Chromatogr. A, 753, 217 (1996) 
  5. Belenkii BG, Malt'sev VG, BioFeature, 18, 288 (1995)
  6. Charcosset C, J. Chem. Technol. Biotechnol., 71(2), 95 (1998) 
  7. Rodemann K, Staude E, J. Membr. Sci., 88(2-3), 271 (1994) 
  8. Guo W, Shang Z, Yu Y, Guan T, Zhou L, Biomed. Chromatogr., 6, 95 (1992) 
  9. Ngo TT, Bio Tech., 4, 134 (1986)
  10. Ma X, Mohammad SF, Kim SW, Biotechnol. Bioeng., 40, 530 (1992) 
  11. Hou KC, Zaniewski R, Roy S, Appl. Biochem., 13, 257 (1991)
  12. Bueno SMA, Haupt K, Vijayalashmi MA, J. Chromatogr. B, 667, 57 (1995)
  13. Tennikova TB, Svec F, J. Chromatogr., 646, 279 (1993) 
  14. Huang SH, Roy S, Hou KC, Tsao GT, Biotechnol. Prog., 4, 159 (1988)
  15. Brandt S, Goffe RA, Kessler SB, O'Connor JL, Zale SE, Bio Tech., 6, 779 (1988)
  16. Iwata H, Saito K, Furasaki S, Biotechnol. Prog., 17, 412 (1991)
  17. Langlotz P, Kroner KH, J. Chromatogr., 591, 107 (1992) 
  18. Josic D, Zeilinger K, Lim YP, Raps M, Hofmann W, Reutter W, J. Chromatogr., 484, 327 (1989) 
  19. Keith D, Lightfoot EN, J. Chromatogr. A, 702, 3 (1995) 
  20. van Huynh N, Motte JC, Pilette JF, Decleire M, Colson C, Anal. Biochem., 211, 61 (1993) 
  21. Josic D, Reusch J, Loster K, Baum O, Reutter W, J. Chromatogr., 590, 59 (1992) 
  22. Lutkemeyer D, Siwiora S, Buntemeyer H, Lehmann J, Presented at the 10th DECHEMA Annual biotechnology Meeting, Karlsruhe, 1-3 June (1992)
  23. Jungbauer A, Unterluggauer F, Uhi K, Buchacher A, Steindl F, Pettauer D, Wenisch E, Biotechnol. Bioeng., 32, 326 (1988) 
  24. Luksa J, Menart V, Milicic S, Kus B, Gaberc-Porekar V, Josic D, J. Chromatogr. A, 661, 161 (1994) 
  25. Wang QC, Svec F, Frechet JMJ, J. Chromatogr. A, 669, 230 (1994) 
  26. Champluvier B, Kula MR, Bioseparation, 2, 343 (1992)
  27. Rief OW, Freitag R, Bioseparation, 4, 369 (1994)