화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.8, 963-968, December, 2000
Poly(4-vinlpyridine)과 3-Pentadecylphenol로 이루어진 Molecular Bottle-Brush의 Order-Disorder Transition에 미치는 용매효과
The Effect of Solvents on the Order-Disorder Transition of Molecular Bottle-Brush Composed of Poly(4-vinylpyridine) and 3-Pentadecylphenol
E-mail:
초록
Poly(4-vinlpyridine) (P4VP)과 3-pentadecylphenol (PDP)을 수소결합을 통해 molecular bottle-brush를 제조하였다. 벌크상과 용매 heptane, toluene 및 xylene을 도입하여 제조한 용액상 bottle-brush의 상거동과 액정구조를 P4VP의 피리딘기 대 PDP의 몰비(x)를 달리하여 조사하였다. 열광학 현미경분석(TOA)과 시차주사열량분석(DSC)을 통하여 벌크상 bottle-brush는 질서-무질서 전이온도(T(ODT))위의 온도영역에서는 무질서한 용융구조, T(ODT)아래 영역에서는 질서화된 미세상분리구조, 더 낮은 온도영역에서는 측쇄기의 결정화구조가 형성됨을 알 수 있었다. 반면, 용액상 bottle-brush에서는 용매가 첨가됨에 따라서 상전이온도들, T(ODT)와 측쇄기의 결정화 온도(T(C))가 낮은 온도영역으로 이동하였으며, 이러한 경향은 PDP와 용매간의 상용성에 기인하는 것으로 해석할 수 있었다.
Molecular bottle-brush was prepared by hydrogen-bonding between poly(4-vinylpyridine) (P4VP) and 3-pentadecylphenol (PDP). The phase behavior and mesomorphic structure of bottle-brush in the bulk, heptane, toluene, and xylene were investigated by changing the mole ratio of P4VP and PDP (x). Thermal-optical microscopy analysis (TOA) and differential scanning calorimetry (DSC) demonstrated that bottle-brushes, in the bulk, formed a disordered melt at temperatures above the order-disorder temperature (T(ODT)); whereas at T < T(ODT) an ordered-microphase separated structure was observed. Further cooling rendered the side-chain crystallization. However, in the solvent-bone bottle-brush system, T(ODT) and the temperature of side-chain crystallization (T(c)), i.e., the phase transition temperatures, were lowered by adding a solvent. And it was found that the phase behavior of these bottle-brushes was affected by the miscibility between the solvents and PDP.
  1. Lehn JM, Angew. Chem.-Int. Edit., 27, 89 (1988) 
  2. Lehn JM, Angew. Chem.-Int. Edit., 29, 1304 (1990) 
  3. ten Brinke G, Ikkala O, Trends Polym. Sci., 7, 213 (1997)
  4. Fredrickson GH, Macromolecules, 26, 2825 (1993) 
  5. Cao Y, Smith P, Polymer, 34, 3139 (1993) 
  6. Wintermantel M, Gerle M, Fischer K, Schmidt M, Wataoka I, Urakawa H, Kajiwara K, Tsukahara Y, Macromolecules, 29(3), 978 (1996) 
  7. Ruokolainen J, Tenbrinke G, Ikkala O, Torkkeli M, Serimaa R, Macromolecules, 29(10), 3409 (1996) 
  8. Ruokolainen J, Torkkeli M, Serimaa R, Komanschek E, Tenbrinke G, Ikkala O, Macromolecules, 30(7), 2002 (1997) 
  9. Ikkala O, Ruokolainen J, Torkkeli M, Tanner J, Serimaa R, ten Brinke G, Colloids Surf. A-Physicochem. Eng. Asp., 147(1-2), 241 (1999) 
  10. Choi JR, Cho HK, Chun HA, Noh ST, Polym.(Korea), 24(4), 488 (2000)
  11. Varshney SK, Zhong XF, Eisenberg A, Macromolecules, 26, 701 (1993) 
  12. Creutz S, Teyssie P, Jerome R, Macromolecules, 30(1), 1 (1997) 
  13. Berkowitz JB, Michael Y, Fuoss RM, J. Polym. Sci., 28, 69 (1958) 
  14. Ruokolainen J, ten Brinken G, Ikkala O, Torkkeli M, Serimaa R, Colloids Surf. A-Physicochem. Eng. Asp., 147, 241 (1999) 
  15. Cesteros LC, Isasi JR, Katime I, Macromolecules, 26, 2323 (1993) 
  16. Cesteros LC, Isasi JR, Katime I, Macromolecules, 26, 7259 (1993)
  17. Brandrup J, Immergut EH, "Polymer Handbook," 3rd ed., Chap. 7, 519 (1989)