화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.12, No.3-4, 151-155, December, 2000
Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions
E-mail:
A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (τ(dyn)) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with E(1.45). Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.
  1. Block H, Kelly JP, J. Phys. D: Appl. Phys., 21, 1661 (1988) 
  2. Block H, Kelly JP, Qin A, Waston T, Langmuir, 6, 6 (1990) 
  3. Bloodworth R, Wendt E, Int. J. Mod. Phys. B, 10, 2951 (1996) 
  4. Chin BD, Lee YS, Park OO, Int. J. Mol. Phys. B, 13, 1852 (1999) 
  5. Chin BD, Lee YS, Lee HJ, Yang SM, Park OO, Korean J. Rheol., 10(4), 195 (1998)
  6. Cho MS, Choi HJ, To K, Macromol. Rapid Commun., 19, 271 (1998)
  7. Cho MS, Choi HJ, Chin IJ, Ahn WS, Microporous Mesoporous Mater., 32, 233 (1999) 
  8. Choi HJ, Cho MS, Kang KK, Ahn WS, Microporous Mesoporous Mater., 39, 19 (2000) 
  9. Choi HJ, Cho MS, Jhon MS, Polym. Adv. Technol., 8, 697 (1997) 
  10. Choi HJ, Kim TW, Cho MS, Kim SG, Jhon MS, Eur. Polym. J., 35, 699 (1997)
  11. Coutler JP, Weiss KD, Carlson JD, J. Intell. Mater. Sys. Struct., 4, 248 (1993)
  12. Dealy JM, Wissburn KF, In Melt Rheology and its Role in Plastics Processing: Theory and Applications Van Nostrand Reinhold, New York, 18 (1990)
  13. Felici N, Foulc JN, Atten P, In Electrorheological Fluids, Mechanisms, Properties, Technology and Applications ed. by R. Tao and G.D. Roy, 1990, World Scientific, Singapore, 139 (1994)
  14. Gast AP, Zukoski CF, Adv. Colloid Interface Sci., 30, 153 (1989) 
  15. Goodwin JW, Markham GM, Vincent B, J. Phys. Chem. B, 101(11), 1961 (1997) 
  16. Gow CJ, Zukoski CF, J. Colloid Interface Sci., 136, 175 (1989)
  17. Halsey TC, Science, 258, 761 (1992) 
  18. Hao T, Kawai A, Ikazaki F, Langmuir, 14(5), 1256 (1998) 
  19. Hao T, Kawai A, Ikazaki F, Int. J. Mod. Phys. B, 10, 2885 (1999) 
  20. Hwang I, Lee SJ, Korean J. Rheol., 6(2), 83 (1994)
  21. Ikazaki F, Kawai A, Uchida K, Kawakami T, Edmura K, Sakurai K, Anzai H, Asako Y, J. Phys. D: Appl. Phys., 31, 336 (1998) 
  22. Jordan TC, Shaw MT, Mcleish TC, J. Rheol., 36, 441 (1992) 
  23. Kim HK, Lim SC, Choi SB, Park YP, Korean J. Rheol., 11(2), 97 (1999)
  24. Kim JW, Kim SG, CHoi HJ, Jhon MS, Macromol. Rapid Commun., 20, 450 (1999) 
  25. Kim SG, Choi HJ, Jhon MS, Macromol. Chem. Phys., in press (2001)
  26. Klingenberg DJ, von Swol F, Zukoski CF, J. Chem. Phys., 94, 6170 (1991) 
  27. Lee JH, Cho MS, Choi HJ, Jhon MS, Colloid Polym. Sci., 277, 73 (1999) 
  28. Otsubo Y, Sekine M, Katayama S, J. Rheol., 36(3), 479 (1992) 
  29. Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng., R17, 57 (1996) 
  30. Phol HA, Engelhardt EH, J. Phys. Chem., 66, 2085 (1962)
  31. See H, Korea-Aust. Rheol. J., 11(3), 169 (1999)
  32. Shih YH, Conrad H, Int. J. Mod. Phys. B, 8, 2835 (1994) 
  33. Tanaka K, Sahashi A, Akiyama R, Koyama K, Phys. Rev. E, 52, R3325 (1995) 
  34. Thurston GB, Gaertner EB, J. Rheol., 35(7), 1327 (1991)