Korea-Australia Rheology Journal, Vol.12, No.3-4, 151-155, December, 2000
Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions
E-mail:
A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (τ(dyn)) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with E(1.45). Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.
Keywords:Electrorheology;Semiconducting polymer;Poly(naphthalene quinone) radical;Suspension;Yield stress;Scaling
- Block H, Kelly JP, J. Phys. D: Appl. Phys., 21, 1661 (1988)
- Block H, Kelly JP, Qin A, Waston T, Langmuir, 6, 6 (1990)
- Bloodworth R, Wendt E, Int. J. Mod. Phys. B, 10, 2951 (1996)
- Chin BD, Lee YS, Park OO, Int. J. Mol. Phys. B, 13, 1852 (1999)
- Chin BD, Lee YS, Lee HJ, Yang SM, Park OO, Korean J. Rheol., 10(4), 195 (1998)
- Cho MS, Choi HJ, To K, Macromol. Rapid Commun., 19, 271 (1998)
- Cho MS, Choi HJ, Chin IJ, Ahn WS, Microporous Mesoporous Mater., 32, 233 (1999)
- Choi HJ, Cho MS, Kang KK, Ahn WS, Microporous Mesoporous Mater., 39, 19 (2000)
- Choi HJ, Cho MS, Jhon MS, Polym. Adv. Technol., 8, 697 (1997)
- Choi HJ, Kim TW, Cho MS, Kim SG, Jhon MS, Eur. Polym. J., 35, 699 (1997)
- Coutler JP, Weiss KD, Carlson JD, J. Intell. Mater. Sys. Struct., 4, 248 (1993)
- Dealy JM, Wissburn KF, In Melt Rheology and its Role in Plastics Processing: Theory and Applications Van Nostrand Reinhold, New York, 18 (1990)
- Felici N, Foulc JN, Atten P, In Electrorheological Fluids, Mechanisms, Properties, Technology and Applications ed. by R. Tao and G.D. Roy, 1990, World Scientific, Singapore, 139 (1994)
- Gast AP, Zukoski CF, Adv. Colloid Interface Sci., 30, 153 (1989)
-
Goodwin JW, Markham GM, Vincent B, J. Phys. Chem. B, 101(11), 1961 (1997)
- Gow CJ, Zukoski CF, J. Colloid Interface Sci., 136, 175 (1989)
- Halsey TC, Science, 258, 761 (1992)
-
Hao T, Kawai A, Ikazaki F, Langmuir, 14(5), 1256 (1998)
- Hao T, Kawai A, Ikazaki F, Int. J. Mod. Phys. B, 10, 2885 (1999)
- Hwang I, Lee SJ, Korean J. Rheol., 6(2), 83 (1994)
- Ikazaki F, Kawai A, Uchida K, Kawakami T, Edmura K, Sakurai K, Anzai H, Asako Y, J. Phys. D: Appl. Phys., 31, 336 (1998)
- Jordan TC, Shaw MT, Mcleish TC, J. Rheol., 36, 441 (1992)
- Kim HK, Lim SC, Choi SB, Park YP, Korean J. Rheol., 11(2), 97 (1999)
-
Kim JW, Kim SG, CHoi HJ, Jhon MS, Macromol. Rapid Commun., 20, 450 (1999)
- Kim SG, Choi HJ, Jhon MS, Macromol. Chem. Phys., in press (2001)
- Klingenberg DJ, von Swol F, Zukoski CF, J. Chem. Phys., 94, 6170 (1991)
- Lee JH, Cho MS, Choi HJ, Jhon MS, Colloid Polym. Sci., 277, 73 (1999)
- Otsubo Y, Sekine M, Katayama S, J. Rheol., 36(3), 479 (1992)
- Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng., R17, 57 (1996)
- Phol HA, Engelhardt EH, J. Phys. Chem., 66, 2085 (1962)
- See H, Korea-Aust. Rheol. J., 11(3), 169 (1999)
- Shih YH, Conrad H, Int. J. Mod. Phys. B, 8, 2835 (1994)
- Tanaka K, Sahashi A, Akiyama R, Koyama K, Phys. Rev. E, 52, R3325 (1995)
- Thurston GB, Gaertner EB, J. Rheol., 35(7), 1327 (1991)