- Previous Article
- Next Article
- Table of Contents
HWAHAK KONGHAK, Vol.29, No.2, 237-243, April, 1991
TPD 및 TPR에 의한 바나듐-몰리브덴-인 혼합산화물 촉매의 반응특성에 관한 연구
A Study on the Characterization of VMoPO Mixed Oxide Catalysts by Temperature Programmed Desorption and Temperature Programmed Reaction
초록
VMoP 혼합산화물 촉매상에서, 몰리브덴과 인의 조성 변화에 따른 methylcyclopentane(MCP)과 cyclopenta-diene(CPD)의 산화반응을 연구하였고, 여러 반응온도에서 전환율과 무수말레산(MA)의 선택도를 관찰하였다. 또한 CPD의 산화반응 실험에서 최대의 MA 선택도를 보인 V:Mo:P=1:1.34:0.11의 촉매를 사용하여, 질소와 공기의 흐름에서 승온탈착 실험을 하였다. 산화반응 실험결과 바나듐에 대한 몰리브덴과 인의 조성비가 증가할수록 MCP와 CPD의 전환율은 감소하였다. 한편 MA 선택도의 경우에는, 반응물로 CPD를 사용했을 경우 몰리브덴과 인의 조성비가 증가하면 증가할수록 선택도가 증가했으나, 반응물로 MCP를 사용했을 경우에는 Mo와 P의 조성비가 너무 크게 증가했을 경우 오히려 선택도가 감소함을 알 수 있었다. 승온탈착 실험결과 4개의 탈착 피크가 관찰되었고 각 피크는 산화반응결과 확인된 생성물의 수와 일치하였다. 또한 이 반응의 주요 생성물인 무수말레산과 무수푸탈산은 촉매의 서로 다른 활성점에서 생성됨을 알 수 있었다.
Oxidation reactions of methylcyclopentane(MCP) and cyclopentadiene(CPD) on the V-Mo-P mixed oxide catalyst were investigated with the composition of Mo and P. The conversion of MCP and CPD and the selectivity of MA were also examined at various reaction temperatures. Studies of activation points on the catalyst surfaces were performed through the temperature programmed desorption. In the oxidation of CPD, the highest value of MA selectivity was observed by using the V-Mo-P mixed catalyst(V:Mo:P=1:1.34:0.11). The conversion of MCP and CPD resulted in decreasing with increasing composition ratio of molybdenum and phosphorous in the V-Mo-P mixed oxide catalyst. The selectivity of MA in the oxidation of CPD resulted in increasing with increasing composition ratio of molybdenum and phosphorous in the catalyst. However, the selectivity of MA in the oxidation of MCP was decreased with increasing molyb-denum and phosphorous composition ratio. In the temperature programmed reaction(TPR) spectrum, four desorption peaks were observed and the number of the observed peaks were same as the number of reaction products. It was founded the main product of those oxidation reactions, MA and PA, were produced at different activation point of the catalyst.
- Hucknall DJ, Selective Oxidation of Hydrocarbons, Academic Press (1974)
- Dabyburjor DB, Jewur SS, Ruckenstein E, Catal. Rev.-Sci. Eng., 19, 293 (1979)
- Weiss D, Ind. Eng. Chem., 12, 228 (1920)
- Freeks MC, Mount RA, U.S. Patent, 3,977,998 (1976)
- Harrison JP, U.S. Patent, 3,915,892 (1975)
- Kerr RO, U.S. Patent, 3,255,212 (1966)
- Conover C, U.S. Patent, 2,079,490 (1937)
- Faith WL, Dendurent MS, Refiner Natural Gasoline Manufacturer, 18, 393 (1939)
- Nagemeguiri N, Matsumoto M, Japan Patent, 5,710,655 (1957)
- Ikawa T, Japan Patent, 7,429,165 (1974)
- Amenomiya Y, Cvetanovic RJ, J. Phys. Chem., 67, 144 (1963)
- Honett BK, Moffat JB, J. Catal., 88, 253 (1984)
- Yakerson VI, Rozanv VV, Rubinshtein AM, Surf. Sci., 12, 221 (1968)
- Nishimura T, Uchida H, Tokyo Kogyo Shikensho Hokoku, 62, 359 (1967)
- Morselli L, Trifiro F, J. Catal., 75, 112 (1982)
- Nakamura M, Kawai K, Fujiwara Y, J. Catal., 34, 345 (1974)
- Poli G, Appl. Catal., 1, 395 (1981)