화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.32, No.3, 431-440, June, 1994
이온의 탄성충돌모델에 의한 플라즈마 식각단면의 전산모사
Simulation of Plasma Etch Profile based on a Model of Elastic Collision between Ions and Neutrals
초록
본 연구에서는 플라즈마 식각에 의해 생성되는 도랑의 단면을 공정의 내부변수를 사용한 Monte Carlo방법에 의하여 전사모사하였다. 플라즈마로부터 sheath로 유입된 이온은 전기장에 의해 가속되어 기판을 식각하는데, sheath를 진행하는 동안에 수많은 중성입자와 불규칙적으로 충돌하기 때문에 진행방향과 에너지가 달라지고, 결국 기판에 도달하는 이온의 입사각과 에너지가 여러 값을 갖게 된다. 본 연구에서는 이온과 중성입자간에 탄성충돌이 일어난다고 가정하여 이온의 진행방향과 에너지 분포를 구하였고, 이를 이용하여 기판의 식각단면을 구하였다. 이온의 평균자유행로와 sheath 두께의 비가 클수록 식각단면의 비등방도가 커지고 식각면의 중간부분이 불룩해 지는 bowing현상이 감소하였다. 또한, 식각하려는 선폭이 작고 이온의 평균자유행로/sheath 두께비가 작을 때에는 식각속도가 현저히 줄어드는 현상이 나타났다. 식각면의 하부구석에 도랑이 생기는 소위 "trenching (또는 dove tail)현상"은 이온이 식각벽면에 부딪힌 후에 되튀어 나가는 경우를 고려하여 실제단면과 유사하게 모사할 수 있었다.
Profiles of narrow and deep trenches produced by plasma ion etching have been simulated by a Monte Carlo method based on simple collision model. In the plasma etching process, ions from the bulk plasma are introduced into the sheath layer to be accelerated by the electric field toward the electrode plate. A substrate on the electrode plate is etched by the incident ions, whose kinetic energy and travelling direction are modified by random collisions with the neutrals in the sheath. We have simulated the ion etching process assuming an elastic collision between the ions and the neutrals in the sheath layer. Distribution functions for the ion energy and its arrival angel at the substrate surface have been obtained, and they have been used for computation of the time-dependent etch profile of the substrate by string algorithm. Profile of the etched trench has higher aspect ratio when the ratio between the mean free path of the ion and the thickness of the sheath layer(MFP/Sh) is larger. The etch rate decreases as the MFP/Sh ratio becomes smaller and the mask width narrower, which agrees with the experimental observations. The so-called "dove tail"(or "trenching") shape observed at the bottom corner of the etched trench may be simulated successfully by considering the ions glancing from the side wall after collision at low angles.
  1. Sze SM, "VLSI Technology," 2nd ed., McGraw-Hill (1988)
  2. Davis WD, Vanderslice TA, Phys. Rev., 131, 219 (1963) 
  3. Zarowin CB, J. Electrochem. Soc., 130, 1144 (1983) 
  4. Zarowin CB, J. Vac. Sci. Technol. A, 2, 1537 (1984) 
  5. Klshner MJ, J. Appl. Phys., 58, 4024 (1985) 
  6. Thompson BE, Swain HH, Fisher DA, J. Appl. Phys., 63, 2241 (1988) 
  7. Cramer WH, J. Chem. Phys., 30, 641 (1959) 
  8. Ulacia-Fresnedo JI, "Theoretical and Experimental Conditions Necessary to Build a Dry-Etching Process Simulator," Stanford Electronics Laboratories (1988)
  9. Fisher DA, Thompson BE, Swain HH, Mater. Res. Soc. Symp. Proc., 68, 231 (1986)
  10. Wannier GH, Bell System Technol. J., 32, 170 (1953)
  11. Hasted JB, "Physics of Atomic Collisions," Butterworths, London (1964)
  12. Hirschfelder JO, Curtiss CF, Bird RB, "Molecular Theory of Gases and Liquids," Wiley, New York (1954)
  13. "SAMPLE 1.5 User's Guide," University of California at Berkeley (1982)
  14. Lee YH, Zhou ZH, IBM Research Report, RC 15592 (1990)