화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.32, No.3, 448-455, June, 1994
슬러리 수용액에 순간 비가역 반응을 수반한 기체 흡수의 표면갱신 모델
Surface Renewal Model of Gas Absorption with Instantaneous Irreversible Reaction in Aqueous Slurry
초록
25℃, 대기압에서 준 회분식 교반조 흡수기를 사용하여 입자의 크기가 3.20㎛와 168.0㎛인 난용성 고체입자, Ca(OH)2 슬러리에 CO2 기체를 흡수시켜 CO2 기체의 흡수속도를 측정하였다. 슬러리에서 CO2와OH-이온의 반응은 순간 비가역 반응이며, 액막의 두께보다 작은 크기의 Ca(OH)2 슬러리에 기체흡수속도 측정값은 액막의 두께보다 큰 경우보다 큰 값을 나타내었다. CO2와OH-의 화학반응이 Ca(OH)2 고체입자의 용해속도에 영향을 미쳐 고체입자의 크기에 의한 흡수속도 촉진현상을 슬러리에서 순간 비가역 화학반응이 수반된 표면갱신설로서 해석하였으며, 입자의 크기가 경막설로부터 산출한 액막의 크기보다 작은 경우 흡수속도 측정값으로부터 구한 촉진계수 측정값을 표면갱신설로부터 산출한 이론값에 잘 접근하였다.
The absorption of carbon dioxide into aqueous slurry was carried out using a stirred absorber in the presence of solid particles such as Ca(OH)2 at 25℃ and 1 atm. The reaction between dissolved carbon dioxide and Ca(OH)2 in a slurry was an instantaneous irreversible reaction. The absorption rate in solid suspension containing fine particles smaller than the liquid film thickness was considerably higher than the rate in a saturated solution containing large particles. It was explained by the fact that the dissolution of solid was enhanced by the reaction between the absorbed gas and the dissolved solid species in the liquid film. The enhancement factor could be explained by the surface renewal theory and was compared with those by the film theory and the penetration theory.
  1. Ramachandran PA, Sharma MM, Chem. Eng. Sci., 24, 1681 (1969) 
  2. Uchida S, Koide K, Shindo M, Chem. Eng. Sci., 30, 644 (1975) 
  3. Uchida S, Koide K, Wen CY, Chem. Eng. Sci., 32, 447 (1977) 
  4. Sada E, Kumazawa H, Butt MA, Chem. Eng. Sci., 32, 1165 (1977) 
  5. Miiyama H, Smith JM, AIChE J., 23, 592 (1977) 
  6. Uchida S, Morguchi H, Maejima H, Koide K, Kageyma S, Can. J. Chem. Eng., 56, 690 (1978)
  7. Sada E, Kumazawa H, Butt MA, Chem. Eng. Sci., 34, 715 (1979) 
  8. Joosten GEH, Schilder JGM, Janssen JJ, Chem. Eng. Sci., 32, 563 (1977) 
  9. Park SW, Kim SS, Kim JH, HWAHAK KONGHAK, 28(1), 52 (1990)
  10. Park SW, Kim SS, Han SB, HWAHAK KONGHAK, 28(3), 327 (1990)
  11. Park SW, Kim SS, HWAHAK KONGHAK, 28(4), 379 (1990)
  12. Park SW, Hong JT, Park MK, Kim SS, Kumazawa H, HWAHAK KONGHAK, 31(4), 457 (1993)
  13. Ramachandran PA, Charma MM, Chem. Eng. Sci., 24, 1681 (1969) 
  14. Sada E, Kumazawa H, Butt MA, Chem. Eng. Sci., 32, 1499 (1977) 
  15. Kojima H, Hakuta M, Kudoh K, Ichinoseki T, J. Chem. Eng. Jpn., 22, 621 (1989) 
  16. Patwardhan AV, Sharma MM, Ind. Eng. Chem. Res., 28, 5 (1989) 
  17. Dantuluri SR, Davis WT, Counce RM, Reed GD, Sep. Sci. Technol., 25, 1843 (1990)
  18. Bhagwart SS, Chem. Eng. Sci., 45, 1130 (1990) 
  19. Uchida S, Miyachi M, Ariga O, Can. J. Chem. Eng., 59, 560 (1981)
  20. Danckwerts PV, Kennedy AM, Chem. Eng. Sci., 8, 20 (1958)
  21. Nijsing RATO, Hendriksz RH, Kramers H, Chem. Eng. Sci., 10, 88 (1951)
  22. Sharmer MM, Danckerts PV, Chem. Eng. Sci., 18, 729 (1963) 
  23. Astarita G, Ind. Eng. Chem. Fundam., 2, 294 (1963) 
  24. Hikita H, Asai S, Int. Chem. Eng., 4, 332 (1964)
  25. VanKrevelen DW, Hoftijer PJ, Chem. Industr. XXI Congr. Int. Chim. Industr., 168 (1948)
  26. Thomas WJ, Adams MJ, Trans. Faraday Soc., 61, 668 (1965)