화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.9, No.5, 607-613, September, 2003
Analysis for a Generalized CHF Model in Vertical Round Tubes with Uniform Heat Flux
E-mail:
For empirical models based on the local condition hypothesis, few important parameters give significant correlations on the prediction of CHF (critical heat flux). This work is a preliminary study to develop a generalized CHF correlation in uniformly heated vertical round tubes for water. For this analysis, a total of 8912 CHF data points from 12 different published sources were used. This database consisted of following parameter ranges: 0.101 ≤ P (pressure) ≤ 20.679 MPa, 9.92 ≤ G (mass flux) ≤ 18619.39 kg/m2s, 0.00102 ≤ D (diameter) ≤ 0.04468 m, 0.03 ≤ L (length) ≤ 4.97 m, 8.5 L/D 792.26, -609.33 Inlet subcooling 1655.34 kJ/kg, 0.11 ≤ qc (CHF) ≤ 21.41 MW/m2, and 0.85 ≤ Xe (exit qualities) ≤ 1.58. Five representative CHF data sets at pressure conditions of 0.101, 5.001, 10, 16 and 20 MPa were selected, analyzed, and compared to evaluate the effects of parameters on the CHF. It has revealed that the major variables which influenced the CHF, other than the system pressure (P), were tube diameter (D), mass flux of water (G), and local true mass fraction of vapor (Xt). Square root of GXt and square root of D were the significant parameters that showed strong parametric trends of the data sets. The results of this study have reaffirmed the feasibility that an advanced generalized CHF correlation for uniformly heated vertical round tubes can be found.
  1. Caira M, Caruso G, Naviglio A, Int. Commun. Heat Mass Transfer, 22, 35 (1995) 
  2. Lombardi C, Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics: NURETH-7, NUREG/CP-0142, Vol. 4, pp. 2506-2518 (1995)
  3. Pernica R, Cizek J, Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics: NURETH-7, NUREG/CP-0142, Vol. 4, pp. 2636-2653 (1995)
  4. Deng Z, Dougherty TJ, Yang BW, Proc. 8th Int. Topl. Mtg. Nuclear Reactor Thermal-Hydraulics, Kyoto, Japan, Vol. 2, p. 981 (1997)
  5. Yagov VV, Puzin VA, Sukomel LA, 2nd European Thermal-Sciences and 14th UIT National Heat Transfer Conference, Vol. 1, pp. 483-490 (1996)
  6. Shim WJ, Lee SW, Kim O, J. Ind. Eng. Chem., 9(3), 323 (2003)
  7. Zeigarnik YA, Klimov AI, Rotinov AG, Smyslov BA, Thermal Eng., 44, 184 (1997)
  8. Jafri T, Dougherty TJ, Yang BW, Proceedings of the ASME Heat Transfer Division, Vol. 3, ASME HTD-Vol. 334, pp. 229-238 (1996)
  9. Shah MM, Heat Fluid Flow, 8, 326 (1987) 
  10. Shim WJ, Joo SK, J. Ind. Eng. Chem., 8(3), 268 (2002)
  11. Thompson B, Macbeth RV, AEEW-R 356, United Kingdom Atomic Energy Authority (1964)
  12. Becker KM, Strand G, Osterdahl C, Royal Institute of Technology, Laboratory of Nuclear Engineering, KTH-NEL-14, Sweden (1971)
  13. Lee DH, Obertelli JD, AEEW-R213 (1963)
  14. Becker KM, Aktiebolaget Atomenergie Report AE 177, Sweden (1965)
  15. Kim HC, Baek WP, Chang SH, Nucl. Eng. Design, 199, 49 (2000) 
  16. Mishima K, Ph.D. Thesis, Kyoto University, Japan (1984)
  17. Lowdermilk WH, Lanzo CD, Siegel BL, NACA TN 4382 (1958)
  18. Casterline JE, Matzner B, Topical Report No. I, TASK XVI, Columbia University, New York (1964)
  19. Griffel J, NYO-187-7, Columbia University, New York (1965)
  20. Swenson HS, Caver JR, Karkarla CR, ASME, 62-WA-297 (1963)
  21. Cheh HY, Fighetti CF, McAssey EV, Report No. CU-HTRF-T8 (1992)
  22. Bertoletti S, Gaspari GP, Lombardi C, Zavattarelli R, CISE Report R-74 (1963)
  23. Dorra H, Lee SC, Bankoff SG, Nuclear Reactor Technology and Scientific Computations (1993)
  24. Saha P, Zuber N, In Proceedings of the 5th Int. Heat Transfer Conference, Tokyo, Paper B4.7, pp. 175-179 (1974)
  25. Levy S, Int. J. Heat Mass Transf., 10, 951 (1967)
  26. Kroeger PG, Zuber N, Int. J. Heat Mass Transf., 11, 211 (1968)
  27. Kureta M, Mishima K, Nishihara H, Heat Transfer-Jpn. Res., 23, 415 (1994)
  28. Sudo Y, Heat Transfer-Jpn. Res., 27, 509 (1998)