Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.8, 1058-1063, December, 2003
초임계 CO2를 이용한 상전화법에 의해 제조된 미세 다공질 폴리카보네이트 막의 특성
Characteristics of Microporous Polycarbonate Membrane Prepared by a Phase Inversion Method with Supercritical CO2
E-mail:
초록
초임계 CO2를 이용한 상전화법에의해 제조된 미세 다공질 폴리카보네이트 막의특성을 이해하기 위해 실험을 실시했다. 다공질 막의 공극률은 30 wt% 폴리에틸렌글리콜이 초기에 사용된 조건에서 메탄올, 에탄올, n-부탄올과 같은 유기용매를 사용하여 측정한 결과 약 72 ~ 77 %였다. 막에 남아있는 폴리에틸렌글리콜은 초기 10 min 동안 약 95% 감소되었으며 그 후에는 시간이 지남에 따라 완만한 속도로 제거되었다. 일정시간, 일정온도 조건하에서 폴리카보네이트 막 내부에서의 폴리에틸렌글리콜의 제거율은 150 bar까지는 압력이 올라감에 따라 증가했지만 그 이상의 압력에서는 압력이 증가하면 오히려 제거율이 감소했다.
The experiments were performed to investigated the characteristics of the microporous membrane prepared by a phase inversion method with supercritical CO2. The porosity of microporous polycarbonate membrane was measured as about 72 ~ 77% with organic solvents such as methanol, ethanol, and n-buthanol. About 92% of polyethyleneglycol remained in the membrane was removed for the initial 10 min and over 10 min, the removal was slowly done with time. The removal rate increased with an increasing pressure to 150 bar. However, over 150 bar, it decreased with an increasing pressure.
- Lee YW, News Inf. Chem. Eng., 19(3), 325 (2001)
- Kim BU, Kang US, HWAHAK KONGHAK, 30(6), 635 (1992)
- Bae HK, Jeon JH, HWAHAK KONGHAK, 31(6), 637 (1993)
- Lee YY, Hong YH, Chem. Ind. Technol., 3(3), 311 (1985)
- Cho JS, Lee KR, Lim JS, Kim JD, Choi DK, Lee YY, Chun HS, HWAHAK KONGHAK, 31(4), 448 (1993)
- Bae HK, Seo JT, HWAHAK KONGHAK, 34(1), 123 (1996)
- Kim HJ, Kang YS, Kim JJ, Polym. Sci. Technol., 2(2), 81 (1991)
- Kim KY, Polym.(Korea), 10(6), 560 (1986)
- Lee HI, Lee JS, Polym. Sci. Technol., 4(6), 423 (1993)
- Lee SS, Cho JY, Polym. Sci. Technol., 4(6), 432 (1993)
- Chen SH, Lai JY, Ruaan RC, Wang AA, J. Membr. Sci., 123(2), 197 (1997)
- Chen SH, Ruaan RC, Lai JY, J. Membr. Sci., 134(2), 143 (1997)
- Ruaan RC, Wu TH, Chen SH, Lai JY, J. Membr. Sci., 138(2), 213 (1998)
- Bae SY, Cho DH, Kim HT, Kumazawa H, Korean J. Chem. Eng., 11(2), 127 (1994)
- Bodzek M, Bohdziewicz J, J. Membr. Sci., 60, 25 (1991)
- Matsuyama H, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K, J. Membr. Sci., 194(2), 157 (2001)
- Matsuyama H, Yamamoto A, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K, J. Membr. Sci., 204(1-2), 81 (2002)
- Lee SB, Kim HJ, Jung IH, Hong IK, Theor. Appl. Chem. Eng., 1, 913 (1995)
- Shi Q, Yu MX, Zhou X, Yan YS, Wan CR, J. Power Sources, 103(2), 286 (2002)
- Sun YP, Supercritical Fluid Technology in Materials Science and Engineering, 1-46, 230, Marcel Dekker, Inc., New York, U.S.A. (2002)
- Kim WS, Chair TS, J. Korean Chem. Soc., 39, 891 (1995)
- McHardy J, Sawan SP, Supercritical Fluid Cleaning, 25-36, Noyes Publications, New Jersey, U.S.A. (1997)
- Lee JS, Jeon BJ, Jung IH, Hong IK, J. Korean Ind. Eng. Chem., 6(2), 320 (1995)
- Kim JR, Kyong JB, J. Korean Chem. Soc., 34, 325 (1990)
- Kim JB, Kim HK, Kyong JB, J. Korean Chem. Soc., 32, 311 (1988)