화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.8, 1098-1103, December, 2003
전분/펙틴 블렌드 필름의 기계적 물성 및 산소 투과도 연구
A Study on the Mechanical Properties and Oxygen Permeability of Pectin/Starch Blend Film
E-mail:
초록
생분해성 및 수용성이며 식용 가능한 펙틴/전분 필름을 제조하여 기계적, 열적 특성, 흡습성 및 산소 투과도를 조사하였다. 필름의 인장 강도와 탄성률은 전분의 함량이 증가할수록 감소하였고, 신장률은 거의 영향이 없었다. 가소제 글리세롤의 함량이 증가할수록 인장 강도와 탄성률은 급격히 감소하나, 신장률은 조금 증가하였다. 높은 상대습도에 노출된 필름의 경우 탄성률과 인장 강도는 감소하였고, 신장률은 증가하였다. 흡수율은 글리세롤의 함량에 따라 변하지만, 펙틴/전분 비에 따라서는 큰 변화가 없었다. 펙틴/전분 블렌드 필름의 혐기성 생분해도는 전분의 함량이 증가할수록 증가하였다. 펙틴/전분 블렌드 필름의 산소 투과도는 전분의 함량이 증가할수록 산소투과도는 높아졌으며, 가소제로 사용된 글리세롤의 양이 증가할수록 산소 투과도는 증가하였다.
Mechanical and thermal properties, waterabsorption, and anaerobic biodegradability of pectin/starch blend film were observed. Tensile properties of pectin/starch blend films were strongly affected by the amount of glycerol and the ratio of pectin/starch. Tensile strength and modulus decreased as the content of glycerol increased while, the elongation at break increased. Water absorption of pectin/starch blend films was much affected by the amount of glycerol, where as the effect of pectin/starch content ratio on the water absorption property was not much. Biodegradability of film under anaerobic condition increased with increasing starch content. Oxygen permeability of pectin/starch blend films increased as the contents of starch and glycerol increased.
  1. Narayan R, Polymer From Agriculture Coproducts, Eds., M.L. Fishman, R.B. Friedmann, and S.J. Huang, ACS Symp. Ser. 575, Chap. 1, 1 (1994)
  2. Coffin DR, Fishman ML, Cooke PH, J. Appl. Polym. Sci., 57(6), 663 (1995) 
  3. Coffin DR, Fishman ML, Unruh JJ, Ly T, J. Macromol. Sci.-Pure Appl. Chem., A33(5), 639 (1996)
  4. Lazarus CR, West RL, Oblinger JL, Palmer AJ, J. Food Sci., 41, 639 (1976) 
  5. Platenius H, Wax Emulsion for Vegetables, Bulletin 723, Cornell Univ. Agricultural Experiment Station, Ithaca (1939)
  6. Park HJ, Bunn JM, Weller CL, Vergano PJ, Testin RF, Trans. ASAF, 37, 1281 (1994)
  7. Guillbert S, Technology and Application of Edible Protective Films, in Food Packaging and Preservation. Theory and Practice, ed. M. Mathlouthi, Elsevier Applied Science Publishing Co., London, 371 (1986)
  8. Maynes JR, Krochta JM, J. Food Sci., 59(4), 909 (1994) 
  9. Schultz TH, Owens HS, Maclay WD, J. Colloid Sci., 3, 53 (1948) 
  10. Huang JC, Shetty AS, Wang MS, Adv. Polym. Technol., 10, 23 (1990) 
  11. ISO 14855 Evaluation of the Ultimate Aerobic Biodegradability and Disintegration of Plastics under Controlled Composting Conditions-Method by Analysis of Released Carbon Dioxide (1997)
  12. Gacher R, Muller H, Plastics Additives Handbook, Hanser Munich Vienna, New York, 251 (1987)
  13. Komiya T, Nara S, Tsu M, Starch, 38, 9 (1986) 
  14. Cullity BD, Elements of X-ray Diffraction, 2nd ed., University of Notre Dame, Indiana, 108 (1990)
  15. Gildey MJ, Bulpin PV, Carbohydrate Res., 161, 291 (1987) 
  16. Bloembergen S, David J, Geyer D, Gustafson A, Snook J, Narayan R, Biodegradation and Composting Studies of Polymeric Materials, Biodegradable Plastics and Polymers, ed. Y. Doi and K. Fukuda, Osaka, 601 (1993)
  17. Shuler LM, Kargi F, Bioprocess Engineering, Prentice-Hall Inc., New Jersey, 423 (1992)
  18. Mayer JM, Fundamentals of Biodegradable Materials and Pack Aging, ed. D. Kapan, E. Thomas, and C. Ching, Technomic Publishing Co., Lancaster, PA (1993)