화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.14, No.8, 1092-1097, December, 2003
Sol-Gel법과 수열처리에 의한 Yttria-Stabilized Zirconia (YSZ) 나노분말 제조
Preparation of Yttria-Stabilized Zirconia(YSZ) Nanopowders by the Sol-Gel Method and Hydrothermal Treatment
E-mail:
초록
Sol-gel법에 의해 출발물질로 zirconium-n-butoxide (ZNB)와 yttrium nitrate hexahydrate를 사용하여 Yttria-Stabilized Zirconia (YSZ)분말을 제조하였으며, 이 분말을 autoclave에서 수열처리하여 결정상과 기공특성을 고찰하였다. Sol-gel법에 의해 제조된 후 수열처리되지 않은 분말들은 모두 비정질상을 나타낸 반면에 수열처리에 의해 얻어진 분말들은 ZNB의 가수분해 동안 첨가되는 물량이 적은 경우(R5)를 제외하곤 모두 입방정계 결정상을 나타냈다. 또한 ZNB가 가수분해되는 동안 첨가되는 물량이 적은 조건에서 수열처리된 분말들(R ≤ 20)은 1차 입자들 사이의 기공(intra-particle pores)과 2차입자들 사이의 기공(inter-aggregated pores)이 공존하는 bimodal의 기공분포를 보인 반면, ZNB가 가수분해되 동안 첨가되는 물의 량이 많은 조건(R ≥ 50)에서 제조된 분말을 수열처리한 경우에는 1차 입자들 사이의 기공(intra-particle pores)만 존재하는 단일 기공분포를 나타냈다.
Yttria-stabilized zirconia (YSZ) powders were prepared from zirconium-n-butoxide (ZNB) and yttrium nitrate hexahydrate by sol-gel method and hydrothermal treatment in a autoclave and characteristics of their crystallized phase and porosity were investigated. The powders made by sol-gel method followed by hydrothermal treatment exhibited a cubic crystalline phase except for the case when small amount of water was added during the hydrolysis of ZNB was bimodal; fine intra-particle pores (space between primary particles) and relatively larger inter-aggregated pores (space between secondary particles). In contrast, the powders prepared with sufficient the amount of water during the hydrolysis of ZNB showed a monomodal pore size distribution with only intra-particle pores.
  1. Cheong CW, Park SH, Song KC, Lee HH, Oh SC, Dong JK, Cha YY, Byun TG, HWAHAK KONGHAK, 40(6), 741 (2002)
  2. Etsell TH, Flengas SN, Chem. Rev., 70, 339 (1970) 
  3. Minh NQ, J. Am. Ceram. Soc., 76, 563 (1993) 
  4. Sasaki H, Yakawa C, Otoshi S, Suzuki M, J. Appl. Phys., 74, 4608 (1993) 
  5. Clark DJ, Coleman CC, Solid State Ion., 67(3-4), 229 (1994) 
  6. Schindler K, Scheisser D, Vohrer U, Wiemhofer HD, Gopel W, Sens. Actuator, 17, 555 (1989) 
  7. Cheong CW, Park SH, Song KC, Lee HH, Oh SC, Dong JK, Cha YY, HWAHAK KONGHAK, 41(2), 232 (2003)
  8. Mitsuhashi T, Ichihara M, Tatsuke U, J. Am. Ceram. Soc., 57, 97 (1974) 
  9. Nishizawa H, Yamasaki N, Matsuoka K, Mitsushio H, J. Am. Ceram. Soc., 65, 343 (1982) 
  10. Adair JH, Denkewiz RE, In Ceramic Transactions, Ceramic Powder Science III by American Ceramic Society, eds. G.J. Messing, 12, 25, Westerwille, OH (1990)
  11. Bukin AR, Saricimen H, Steele BCH, Trans. J. Br. Ceram. Soc., 79, 105 (1980)
  12. U.S. Patent, 4,619,817 (1986)
  13. Tsukada T, Venigalla S, Morrone AA, Adair JH, J. Am. Ceram. Soc., 82, 1169 (1999)
  14. Piticescu RR, Monty C, Taloi D, Motoc A, Axinte S, J. Eur. Ceram. Soc., 21, 2057 (2001) 
  15. Garvie RC, J. Phys. Chem., 69, 1238 (1965)
  16. Cullity BD, Elements of X-ray Diffraction, Addision-Wesley, Reading, MA, 100 (1978)
  17. Dell'Agli G, Mascolo G, J. Eur. Ceram. Soc., 20, 139 (2000) 
  18. Song KC, Pratsinis SE, J. Mater. Res., 15(11), 2322 (2000)
  19. Pan M, Liu JR, Lu MK, Xu D, Yuan DR, Chen DR, Yang P, Yang ZH, Thermochim. Acta, 376(1), 77 (2001) 
  20. Wen TL, Hebert V, Vilminot S, Bernier JC, J. Mater. Sci., 26(14), 3787 (1991) 
  21. Gragg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, 111 (1982)
  22. Kondo M, Shinozaki K, Ooki R, Mizutani N, J. Ceram. Soc. Jpn., 102(8), 742 (1994)