화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.36, No.6, 877-886, December, 1998
직접 내부개질형 용융탄산염 연료전지(DIR-MCFC)의 성능 및 반응에 관한 수치모사
Simulation on the Performance and Reaction of Direct Internal Reforming Molten Carbonate Fuel Cell(DIR-MCFC)
초록
직접 내부개질형 용융탄산염 연료전지(DIR-MCFC)의 온도 전류밀도 및 가스 조성 분포와 anode쪽에서의 반응 특성등을 고찰하였다. 실험 조건과 가정 조건들은 일정한 두께로 충전된 개질 촉매층이 anode상부에 직접 접촉되는 형태이고, 전지내 연료와 산화제의 흐름은 십자류 형태이며 수증기 -탄소비는 2.5, anode상에서의 발열량이 모두 촉매층으로 균일하게 전달되고 메탄수증기 개질 반응과 수성가스 전환반응은 전 촉매 층에서 평형상태를 유지하는 것으로 간주하였다. 본 모델 수식을 푼 결과 전지내 전극면의 온도는 anode와 cathode의 출구쪽 부분에서 가장 높음을 알 수 있었고, 메탄-수증기 개질 반응은 촉매층 입구로부터 30%지점까지 가장 활발하게 일어나며, 수성가스 전환반응은 전지 입구 50% 지점에서 출구지점까지 활발하게 진행되었다. 또한 배출 가스의 평균 조성을 실험 값과 비교한 결과, 수소 기준으로 약 10%의 차이를 보였다.
The distribution of temperature, current density and gas composition in the direct internal reforming molten carbonate fuel cell(DIR-MCFC), especially on the anode surface, was studied by the numerical modeling. The conditions for modeling of our study are as followings. Catalyst bed is made contact direct with anode and the new of fuel and oxidant is considered as the cross flow. The steam to carbon ratio(S/C ratio) is taken to be 2.5 and heat released by electrochemical reaction is transferred uniformly to the catalyst bed. Two chemical reactions, steam reforming reaction and water-gas shift reaction, are considered to be taking place in the anode-side in addition to the electrochemical reaction. The reactions in the catalyst bed is assumed to be kept in the state of equilibrium. The result of this model shows that the local temperature of fuel cell was the highest at the gas exit of each electrode and methane-steam reforming was drastically occurred until the forward 30 % position along the direction of the anode gas flow while water gas shift reaction progressed actively from the point of forward 50 % position to the end point of anode. The average composition of hydrogen at the gas outlet calculated from this model was 10% lower than that measured from experiments.
  1. Blomen LJMJ, Murgerwa MN, "Fuel Cell Systems," Plenum Press, London (1993)
  2. Appleby AJ, Foulkes FR, "Fuel Cell Handbook," Van Nostrand Reinhold, New York (1989)
  3. Mitchell W, "FUEL CELL," Academic Press, London (1963)
  4. Carvallaro S, Passalacqua E, Maggio G, Patti A, "Fuel Cell Seminar, Program and Abstracts," Courtesy Associates Inc., Washington D.C., 442 (1996)
  5. U.S. Department of Energy, "Fuel Cells, A Handbook (Revision 3)," Office of Fossil Energy, Margantown Energy Technology Center, Morgantown, West Virginia (1994)
  6. Shore D, Maru H, Uchida I, Selman JR, "Carbonate Fuel Cell Technology," The Electrochemical Society Inc. (1993)
  7. Carvallaro S, Freni S, Cannistraci R, Aquino M, Int. J. Hydrog. Energy, 17(3), 181 (1992) 
  8. Ahn YJ, Chung GY, Ju JB, Nam SW, Oh IH, Lim TH, Hong SA, HWAHAK KONGHAK, 32(6), 830 (1994)
  9. Thomas LW, Wilemski G, J. Electrochem. Soc., 130(1), 48 (1983) 
  10. Rostrup-Nielsen JR, "Catalytic Steam Reforming," Springer-Verlag, Berlin, Hidelberg, New York, Tokyo (1984)
  11. Wee JH, Chun HS, HWAHAK KONGHAK, 35(3), 419 (1997)
  12. Kim DH, Lee TJ, HWAHAK KONGHAK, 29(4), 396 (1991)
  13. Choe YS, Song HK, Chang KS, HWAHAK KONGHAK, 33(1), 9 (1995)
  14. "JANAF Thermodynamics Tables 3rd Ed.," J. of Physical and Chemical Reference Data (1985)
  15. Incropera FP, Dewitt DP, "Introduction to Heat Transfer," 825 (1989)
  16. Mori T, Higashiyama K, Yoshioka S, J. Electrochem. Soc., 136(8), 2230 (1989) 
  17. Kreith F, "Principles of Heat Transfer," Intext Press, New York (1973)
  18. Chun HS, Shin DC, Choi YT, Lee DY, Kim K, Lee HI, "Technical Paper on Development of 2KW MCFC," The Ministry of Trade, Industry & Energy (1996)
  19. Yuh CY, Selman JR, J. Electrochem. Soc., 138(12), 3642 (1991)