화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.3, 304-310, May, 2004
종을 이용한 인산의 결정화 메커니즘에 관한 연구
Crystallization Mechanism of Phosphoric Acid in Seeded Cooling Crystallization
E-mail:
초록
종을 이용한 냉각 결정화에 의하여 물-인산 계로부터 인산의 결정화가 연구되었다. 결정화 시간에 따라 평균입경, 입도분포, 전체 결정 개수를 on-line 분석하여 인산 결정화의 메커니즘이 조사되었다. 준안정영역 넓이에 대한 인산 종결정 농도, 냉각속도의 영향이 조사되었다. 인산의 결정화에서 핵생성 속도는 과포화도의 3.54승에 비례하였다. 종 결정 농도가 증가함에 따라 준안정영역넓이는 감소하였으며 냉각속도가 증가함에 따라 준안정영역넓이는 증가하였다. Mersmann에 의한 핵생성 판단기준으로부터 인산-물계의 핵생성은 이차핵생성으로서 표면 핵생성이 지배적으로 일어났다. 회분식 결정화에서 결정성장속도는 과포화도의 3.16승에 의존하였으며 two-step model로부터 부피확산과 표면축적에 의해 결정성장이 일어나는 것으로 판단된다.
Phosphoric acid was crystallized by seeding in a batch crystallizer under various operating conditions. Nucleation and crystal growth kinetics of phosphoric acid in water were explored in seeded cooling crystallization. The effects of seed concentration, cooling rate on the metastable zone width in crystallization of phosphoric acid in aqueous solution were studied. The metastable zone width increased with decreasing the amount of seed and increasing the cooling rate. The order of nucleation of phosphoric acid in solution was found to be 3.54. Surface nucleation was dominated in phosphoric acid-water system via Mersmann's nucleation criterion. The order of growth for phosphoric acid hydrate with respect to supersaturation was found to be 3.16. The crystal growth of phosphoric acid was controlled by the mechanisms combined with volume diffusion and surface integration.
  1. Encyclopedia of Chemical Processing and Design, ed. J.J. McKetta, 35, Marcel Dekker, New York (1990)
  2. http://www.rhodia-ppd.com
  3. U.S. Patent, 3,912,803 (1975)
  4. J.P. Patent, 149,813 (1982)
  5. J.P. Patent, 100.307 (1994)
  6. Kim KJ, Perspective Ind. Chem., 4, 1 (2001)
  7. Kim KJ, Ph.D. Thesis, Martin-Luther-Universiaet Halle-Wittenberg, Shaker Verlag, Aachen, ISBN 3-8265-9887-3 (2001)
  8. Mullin JW, Crystallization, Butterworth-Heineman, New York (1990)
  9. Kim KJ, Mersmann A, Chem. Eng. Res. Des., 75(2), 176 (1997) 
  10. Nyvlt J, J. Cryst. Growth, 3, 377 (1968) 
  11. Garside J, Mersman A, Nyvlt J, Measurement of Crystal Growth Rates, European Federation of Chem. Eng. Woring Party on Crystallization, Munich (1990)
  12. Kim KJ, Mersmann A, Chem. Eng. Sci., 56(7), 2315 (2001) 
  13. Karpinski PH, Chem. Eng. Sci., 40, 1 (1985) 
  14. Mersmann A, Crystallization Technology Handbook, Marcel Dekker, New York (1994)
  15. Health AR, Fawell PD, Bahri PA, Swift JD, Part. Part. Syst. Charact., 19, 84 (2002) 
  16. Barrett P, Glennon B, Part. Part. Syst. Charact., 16(5), 207 (1999) 
  17. Sparks RG, Dobbs CL, Part. Part. Syst. Charact., 10, 279 (1993) 
  18. Smith A, Menzies WC, J. Am. Chem. Soc., 31, 1183 (1909) 
  19. Ross WH, Jones RM, J. Am. Chem. Soc., 47, 2165 (1925) 
  20. Ross WH, Jones RM, Durgin CB, Ind. Eng. Chem., 17, 1081 (1925) 
  21. Mersmann A, Trans. IChemE, 74, 812 (1996)
  22. Tai CY, Lin CH, J. Cryst. Growth, 82, 1 (1987) 
  23. Mersmann A, J. Cryst. Growth, 147, 181 (1995) 
  24. Nore P, Mersmann A, Chem. Eng. Sci., 48, 3083 (1993)