화학공학소재연구정보센터
Fluid Phase Equilibria, Vol.219, No.2, 181-193, 2004
Vapor-phase chemical equilibrium for the hydrogenation of benzene to cyclohexane from reaction-ensemble molecular simulation
The reaction-ensemble Monte-Carlo (REMC) molecular simulation method was used to study the vapor-phase chemical equilibrium for the reaction of hydrogenation of benzene to cyclohexane. A one-center modified Buckingham exponential-6 (1CMBE6) effective pair potential model (that had already been used to predict thermodynamic properties and liquid-liquid equilibria of helium + hydrogen mixtures) was used for hydrogen. Six-center modified Buckingham exponential-6 (6CMBE6) effective pair potential models (that had already been used to reproduce the saturated liquid and vapor densities, vapor pressures, second virial coefficients, and critical parameters of the six-membered ring molecules), were used for benzene and cyclohexane. No binary adjustable parameters were needed to compute the unlike-pair Buckingham exponential-6 interactions in the ternary system. Simulation results were obtained for the effect of some operating variables such as temperature (from 500 to 650 K), pressure (from 1 to 30 bar), and hydrogen to benzene feed mole ratio (from 1.5:1 to 6:1) on the reaction conversion, molar composition, and mass density of the ternary system at equilibrium. These results were found to be in excellent agreement with calculations using the predictive Soave-Redlich-Kwong (PSRK) group contribution equation of state. (C) 2004 Elsevier B.V. All rights reserved.