Journal of Chemical Physics, Vol.121, No.8, 3605-3612, 2004
Instantaneous normal mode analysis of orientational motions in liquid water: Local structural effects
We have investigated the effects of local structures on the orientational motions in liquid water in terms of the instantaneous normal mode (INM) analysis. The local structures of a molecule in liquid water are characterized by two different kinds of index: the asphericity parameter of its Voronoi polyhedron and the numbers of the H bonds donated and accepted by the molecule. According to the two kinds of index, the molecules in the simulated water are classified into subensembles, for which the rotational contributions to the INM spectrum are calculated. Our results indicate that by increasing the asphericity, the rotational contribution has a shift toward the high-frequency end in the real spectrum and a decrease in the fraction of the imaginary modes. Furthermore, we find that this shift essentially relies on the number of the donated H bonds of a molecule, but has almost nothing to do with that of the accepted H bonds. The local structural effects resulting from the geometry of water molecule are also discussed. (C) 2004 American Institute of Physics.