화학공학소재연구정보센터
Macromolecular Research, Vol.13, No.3, 206-211, June, 2005
Effect of Carbon Nanotube Pre-treatment on Dispersion and Electrical Properties of Melt Mixed Multi-Walled Carbon Nanotubes / Poly(methyl methacrylate) Composites
E-mail:
Multi-walled carbon nanotubes (MWNTs) pre-treated by concentrated mixed acid or oxidized at high temperature were melt mixed with poly(methyl methacrylate) (PMMA) using a twin screw extruder. The morphologies and electrical properties of the MWNT/PMMA composites were investigated. The thermally treated MWNTs (t-MWNTs) were well dispersed, whereas the acid treated MWNTs (a-MWNTs) were highly entangled, forming large-sized clusters. The resulting electrical properties of the composites were analyzed in terms of the carbon nanotube (CNT) dispersion. The experimental percolation threshold was estimated to be 3 wt% of t-MWNTs, but no percolation occurred at similar concentrations in the a-MWNT composites, due to the poor dispersion in the matrix.
  1. Iijima S, Nature, 354, 56 (1991) 
  2. Ebbesen TW, Ajayan PM, Nature, 358, 220 (1992) 
  3. Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML, Phys. Rev. Lett., 76, 971 (1996) 
  4. Ball P, Nature, 382(6588), 207 (1996) 
  5. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H, Appl. Phys. Lett., 70, 1480 (1997) 
  6. Thostenson ET, Ten ZF, Chou TW, Compos. Sci. Technol., 61, 1899 (2001) 
  7. Subramoney S, Adv. Mater., 10, 1157 (1998) 
  8. Haggenmmueller R, Gommans HH, Rinzle AG, Fischer JE, Winey KI, Chem. Phys. Lett., 330, 219 (2000) 
  9. Lozano K, Bonilla-Rios J, Barrera EV, J. Appl. Polym. Sci., 80(8), 1162 (2001) 
  10. Jin Z, Pramoda KP, Xu G, Goh SH, Chem. Phys. Lett., 337, 43 (2001) 
  11. Qian D, Dickey EC, Andrews R, Rantell T, Appl. Phys. Lett., 76, 2868 (2000) 
  12. Shadler LS, Giannaris SC, Ajayan PM, Appl. Phys. Lett., 73, 3842 (1998) 
  13. Wang Y, Wu J, Wei F, Carbon, 41, 2939 (2003) 
  14. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE, Science, 280(5367), 1253 (1998) 
  15. Lefrant S, Buission JP, Schreiber J, Chauvet O, Baibarac M, Baltog I, Synth. Met., 139, 783 (2003) 
  16. Sinnott SB, J. Nanosci. Nanotechnol., 2, 113 (2002) 
  17. Chen J, Hamon MA, Hu H, Chen Y, Rao Am, Eklund PC, Haddon RC, Science, 282, 95 (1998) 
  18. Lee GW, Lee JI, Lee SS, Park M, Kim J, J. Mater. Sci., in press. (2005)
  19. Wei D, Dave R, Pfeffer R,, J. Nanopart. Res., 4, 21 (2002) 
  20. Potschke P, Dudkin SM, Alig I, Polymer, 44(17), 5023 (2003) 
  21. Stauffer D, Aharony A, Introduction to Percolation Theory, Taylor and Francis, London (1994)
  22. Sahimi M, Applications of Percolation Theory. Taylor and Francis, London (1994)
  23. Balberg I, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 56, 991 (1987)
  24. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH, Polymer, 40(21), 5967 (1999) 
  25. Andrews R, Jacques D, Minot M, Rantell T, Macromol. Mater. Eng., 287, 395 (2002) 
  26. Safadi B, Andrews R, Grulke EA, J. Appl. Polym. Sci., 4, 2660 (2002)
  27. Hagerstrom JR, Greene SL, Electrostatic Dissipating Composites Containing Hyperion Fibril Nanotubes, Commercialization of Nanostructured Materials, Miami (2000)
  28. Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247 (2002) 
  29. Haggenmmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI, Chem. Rhys. Lett., 330, 219 (2000) 
  30. Miller B, Plastics World, 54, 73 (1996)