Macromolecular Research, Vol.13, No.3, 206-211, June, 2005
Effect of Carbon Nanotube Pre-treatment on Dispersion and Electrical Properties of Melt Mixed Multi-Walled Carbon Nanotubes / Poly(methyl methacrylate) Composites
E-mail:
Multi-walled carbon nanotubes (MWNTs) pre-treated by concentrated mixed acid or oxidized at high temperature were melt mixed with poly(methyl methacrylate) (PMMA) using a twin screw extruder. The morphologies and electrical properties of the MWNT/PMMA composites were investigated. The thermally treated MWNTs (t-MWNTs) were well dispersed, whereas the acid treated MWNTs (a-MWNTs) were highly entangled, forming large-sized clusters. The resulting electrical properties of the composites were analyzed in terms of the carbon nanotube (CNT) dispersion. The experimental percolation threshold was estimated to be 3 wt% of t-MWNTs, but no percolation occurred at similar concentrations in the a-MWNT composites, due to the poor dispersion in the matrix.
Keywords:carbon nanotubes;CNT/polymer composites;electrical conductivity;acid treatment;thermal treatment;melt mixing
- Iijima S, Nature, 354, 56 (1991)
- Ebbesen TW, Ajayan PM, Nature, 358, 220 (1992)
- Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML, Phys. Rev. Lett., 76, 971 (1996)
- Ball P, Nature, 382(6588), 207 (1996)
- Niu CM, Sichel EK, Hoch R, Moy D, Tennent H, Appl. Phys. Lett., 70, 1480 (1997)
- Thostenson ET, Ten ZF, Chou TW, Compos. Sci. Technol., 61, 1899 (2001)
- Subramoney S, Adv. Mater., 10, 1157 (1998)
- Haggenmmueller R, Gommans HH, Rinzle AG, Fischer JE, Winey KI, Chem. Phys. Lett., 330, 219 (2000)
- Lozano K, Bonilla-Rios J, Barrera EV, J. Appl. Polym. Sci., 80(8), 1162 (2001)
- Jin Z, Pramoda KP, Xu G, Goh SH, Chem. Phys. Lett., 337, 43 (2001)
- Qian D, Dickey EC, Andrews R, Rantell T, Appl. Phys. Lett., 76, 2868 (2000)
- Shadler LS, Giannaris SC, Ajayan PM, Appl. Phys. Lett., 73, 3842 (1998)
- Wang Y, Wu J, Wei F, Carbon, 41, 2939 (2003)
- Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE, Science, 280(5367), 1253 (1998)
- Lefrant S, Buission JP, Schreiber J, Chauvet O, Baibarac M, Baltog I, Synth. Met., 139, 783 (2003)
- Sinnott SB, J. Nanosci. Nanotechnol., 2, 113 (2002)
- Chen J, Hamon MA, Hu H, Chen Y, Rao Am, Eklund PC, Haddon RC, Science, 282, 95 (1998)
- Lee GW, Lee JI, Lee SS, Park M, Kim J, J. Mater. Sci., in press. (2005)
- Wei D, Dave R, Pfeffer R,, J. Nanopart. Res., 4, 21 (2002)
- Potschke P, Dudkin SM, Alig I, Polymer, 44(17), 5023 (2003)
- Stauffer D, Aharony A, Introduction to Percolation Theory, Taylor and Francis, London (1994)
- Sahimi M, Applications of Percolation Theory. Taylor and Francis, London (1994)
- Balberg I, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 56, 991 (1987)
- Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH, Polymer, 40(21), 5967 (1999)
- Andrews R, Jacques D, Minot M, Rantell T, Macromol. Mater. Eng., 287, 395 (2002)
- Safadi B, Andrews R, Grulke EA, J. Appl. Polym. Sci., 4, 2660 (2002)
- Hagerstrom JR, Greene SL, Electrostatic Dissipating Composites Containing Hyperion Fibril Nanotubes, Commercialization of Nanostructured Materials, Miami (2000)
- Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247 (2002)
- Haggenmmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI, Chem. Rhys. Lett., 330, 219 (2000)
- Miller B, Plastics World, 54, 73 (1996)