화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.11, No.6, 852-856, November, 2005
Soluble High-Tg Polymers Containing Disperse Red Chromophore that Display Nonlinear Optical Activity
E-mail:
We have synthesized NLO polymers containing azobenzene moieties connected by imide linkages or urethane linkages. The intensity of the second harmonic generation (SHG) signal from spin-cast films of these polymers were 2 to 14 times higher than that from Y-cut quartz. The highest SHG intensity was obtained in PU-DR19 because of the flexible urethane linkages (14 times that from Y-cut quartz). PI-1-DR19 also showed a high SHG (10 times that from Y-cut quartz), but a smaller one than that in PU-DR19. Among the polymers synthesized in this work, the polymers containing urethane linkages showed higher-intensity second harmonic signals than did those possessing imide linkages because of the former's higher flexibility. The values of Tg of the polymers were in the range 140~158 ℃; the 10% weight loss temperatures appeared in the range 290~320 ℃. PU-S-DR19 showed a higher value of Tg than did DU-DR19 because of its spiroacetal moiety. All of these polymers were readily soluble in common organic solvents, such as chloroform, NMR, and DMF.
  1. Burland DM, Miller RD, Walsh CA, Chem. Rev., 94(1), 31 (1994)
  2. Marks T, Ratner M, Angew. Chem.-Int. Edit., 34, 155 (1995)
  3. Libscomb GF, Lytel R, Nonlinear Opt., 3, 41 (1992)
  4. Libscomb GF, Lytel R, Ticknor AJ, Nonlinear Opt., 10, 421 (1995)
  5. Prasad PN, Williams DJ, Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley & Sons, New York (1991)
  6. Nalwa HS, Handbook of Organic Conductive Molecules and Polymers, H. S. Nalwa Ed., John Wiley and Sons, 4, 261 (1997)
  7. Service RE, Science, 267(5206), 1918 (1995)
  8. Samyn C, Verbiest T, Persoons A, Macromol. Rapid Commun., 21, 1 (2000)
  9. Lin J, Hubbard M, Marks T, Chem. Mater., 4, 1148 (1992)
  10. Verbiest T, Burland DM, Jurich MC, Lee VY, Miller RD, Volksen W, Science, 268(5217), 1604 (1995)
  11. Sotoyama W, Tatsuura S, Yoshimura T, Appl. Phys. Lett., 64, 2197 (1994)
  12. Chen TA, Jen AK, Cai YM, J. Am. Chem. Soc., 117(27), 7295 (1995)
  13. Yu D, Gharavi A, Yu L, Appl. Phys. Lett., 66, 1050 (1995)
  14. Hubbard M, Marks T, Lin W, Wong G, Chem. Mater., 4, 965 (1992)
  15. Gal YS, Jin SH, Lim KT, Lee WC, J. Ind. Eng. Chem., 11(4), 603 (2005)
  16. Wang XG, Kumar J, Tripathy SK, Li L, Chen JI, Marturunkakul S, Macromolecules, 30(2), 219 (1997)
  17. Zhang LZ, Cai ZG, Yu QS, Liang ZX, J. Appl. Polym. Sci., 71(7), 1081 (1999)
  18. Masse CE, Conroy JL, Cazeca M, Jiang XL, Sandman DJ, Kumar J, Tripathy SK, J. Appl. Polym. Sci., 60(4), 513 (1996)
  19. Yamashita T, in Photosensitive Polyimides, K. Horie and T. Yamashita, Eds., Technomic Publishing, Lancaster, p. 153 (1995)
  20. Moerner WE, Grunnet-Jepsen A, Thompson CL, Annu. Rev. Mater. Sci., 27, 585 (1997)
  21. Sincerbox GF, Ed., Selected papers on holographic storage, SPIE Optical Engineering Press, Bellingham (1994)
  22. Sutter K, Gunter P, J. Opt. Soc. Am. B, 7, 22744 (1990)
  23. Scott JC, Pantmeier LT, Moerner WE, J. Opt. Soc. Am. B., 54, 9 (1992)
  24. Burland DM, Miller RD, Walsh CA, Chem. Rev., 94(1), 31 (1994)
  25. Grunnet-Jepsen A, Thompson CL, Twieg RJ, Belfield KD, Bratcher MS, Moerner WE, Proc. SPIE-Int. Soc. Opt. Eng., 3144, 216 (1997)
  26. Belfield KD, Chinna C, Najjar O, Macromolecules, 31, 2918 (1997)
  27. Jen AKY, Cai Y, Bedworth PV, Marder SR, Adv. Mater., 9, 132 (1997)
  28. Wu XM, Wu JY, Liu YQ, Jen AKY, J. Am. Chem. Soc., 121(2), 472 (1999)
  29. Albert IDL, Marks T, Ratner MA, J. Am. Chem. Soc., 120, 11174 (1998)
  30. Gubbelmans E, Verbiest T, Van Beylen M, Persoons A, Samyn C, Polymer, 43(5), 1581 (2002)
  31. Yoon KR, Masters Thesis, Hannam University (1998)