Journal of Colloid and Interface Science, Vol.290, No.1, 61-68, 2005
Removal of Cr(VI) from wastewater using rice bran
The novel biosorbent rice bran has been successfully utilized for the removal of Cr(VI) from wastewater. The maximum removal of Cr(VI) was found to be 99.4% at pH 2.0, initial Cr(VI) concentration of 200 mg l(-1), and temperature 20 degrees C. The effect of different parameters such as contact time, adsorbate concentration, pH of the medium, and temperature was investigated. The adsorption kinetics was tested for first-order reversible, pseudo-first-order, and pseudo-second-order; reaction and the rate constants of kinetic models were calculated. Mass transfer of Cr(VI) from the bulk to the solid phase (rice bran) was studied at different temperatures. Different thermodynamic parameters, viz., changes in standard free energy, enthalpy, and entropy, have also been evaluated and it has been found that the reaction was spontaneous and endothermic in nature. The Langmuir and Freundlich equations for describing adsorption equilibrium were applied to data. The constants and correlation coefficients of these isotherm models were calculated and compared. Desorption studies was also carried out and found that complete desorption of Cr(VI) took place at pH of 9.5. The data were also subjected to multiple regression analysis and a model was developed to predict the removal of Cr(VI) from wastewater. (c) 2005 Elsevier Inc. All rights reserved.