화학공학소재연구정보센터
Macromolecular Research, Vol.14, No.1, 59-65, February, 2006
Effect of Collector Temperature on the Porous Structure of Electrospun Fibers
E-mail:
We report a new approach to fabricate electrospun polymer nonwoven mats with porous surface morphology by varying the collector temperature during electrospinning. Polymers such as poly(L-lactide) (PLLA), polystyrene (PS), and poly(vinyl acetate) (PVAc) were dissolved in volatile solvents, namely methylene chloride (MC) and tetrahydrofuran (THF), and subjected to electrospinning. The temperature of the collector in the electrospinning device was varied by a heating system. The resulting nonwoven mats were characterized by using scanning electron microscopy (SEM), field emission SEM (FESEM), and atomic force microscopy (AFM). We observed that the surface morphology, porous structure, and the properties such as pore size, depth, shape, and distribution of the nonwoven mats were greatly influenced by the collector temperature.
  1. Ziabicki A, Fundamentals of Fiber Formation: the Science of Fiber Spinning and Drawing, Wiley, New York (1976)
  2. Ryu YJ, Kim HY, Lee KH, Park HC, Lee DR, Eur. Polym. J., 39, 1883 (2003) 
  3. Hohman MM, Shin M, Rutledge GC, Brenner MP, Phys. Fluids, 13, 2221 (2001) 
  4. Baumgarten PK, J. Colloid Interface Sci., 36, 71 (1971) 
  5. Reneker DH, Yarin AL, Fong H, Koombhongse S, J. Appl. Phys., 87, 4351 (2000)
  6. Lee KH, Kim HY, La YM, Lee DR, Sung NH, J. Polym. Sci. B: Polym. Phys., 40(19), 2259 (2002) 
  7. Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M, Schwarte C, Schaper A, Wendorff JH, Greiner A, Adv. Mater., 12, 637 (2000) 
  8. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH, Adv. Mater., 13, 70 (2001) 
  9. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF, Macromolecules, 37(2), 573 (2004) 
  10. Megelski S, Stephens JS, Chase DB, Rabolt JF, Macromolecules, 35(22), 8456 (2002) 
  11. Reneker DH, Chun I, Nanotechnology, 36, 169 (1997)
  12. Buchko CJ, Chen LC, Shen Y, Martin DC, Polymer, 40(26), 7397 (1999) 
  13. Huang L, McMillan RA, Apkarian RP, Pourdeyhimi B, Conticello VP, Chaikof EL, Macromolecules, 33(8), 2989 (2000) 
  14. Huang L, Nagapudi K, Apkarian RP, Chaikof EL, J. Biomater. Sci.-Polym. Ed., 12, 979 (2001) 
  15. Stitzel JD, Bowlin GL, Mansfield K, Wnek GE, Simpson DG, Int. SAMPE Tech. Conf., 32, 205 (2000)
  16. Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL, J. Macromol. Sci.-Pure Appl. Chem., A38, 1231 (2001)
  17. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B, Polymer, 43(16), 4403 (2002) 
  18. Nagapudi K, Brinkman WT, Leisen JE, Huang L, McMillan RA, Apkarian RP, Conticello VP, Chaikof EL, Macromolecules, 35(5), 1730 (2002) 
  19. Matthews JA, Wnek GE, Simpson DG, Bowlin GL, Biomacromolecules, 3, 232 (2002) 
  20. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK, J. Biomed. Mater. Res., 60, 613 (2002) 
  21. Kenawy ER, Layman JM, Watkins JR, Bowlin GL, Matthews JA, Simpson SG, Wnek GE, Biomaterials, 24, 907 (2003) 
  22. Ratner BD, Trends Polym. Sci., 2, 402 (1994)
  23. Schmidt J, von Recum AF, Biomaterials, 13, 1059 (1992) 
  24. Curtis A, Wilkinson C, Biomaterials, 18, 1 (1997) 
  25. Richter E, Fuhr G, MuEller T, Shirley S, Rogaschewski S, Reimer K, Dell C, J. Mater. Sci. -Mater. Med., 7, 85 (1996) 
  26. Liu W, Wu Z, Reneker DH, Polym. Prepr., 41, 1193 (2000)
  27. Backman AC, Lindberg KAH, J. Appl. Polym. Sci., 91(5), 3009 (2004) 
  28. Matsuyama H, Teramoto M, Nakatani R, Maki T, J. Appl. Polym. Sci., 74(1), 171 (1999)