화학공학소재연구정보센터
Polymer(Korea), Vol.30, No.2, 135-139, March, 2006
수산화인회석이 충전된 고분자 복합체의 치과적 물성
Dental Properties of Hydroxyapatite Filled Polymer Composite
E-mail:
초록
인체 뼈의 주성분인 수산화인회석(hydroxyapatite, HAP)이 충전된 고분자 복합체를 제조하고 이들의 치과적 물성을 분석하여 치과용 수복재료로의 응용성을 확인하고자 하였다. 복합체 제조에 사용된 기질인 아크릴계 단량체는 가시광선으로 경화시켰다. 실험 결과, HAP는 무게비로 65%까지 첨가되었으며 중합깊이는 6.0 mm 정도로서 일반적 치과용 수복재료로의 응용이 가능함을 확인하였다. 제조된 고분자 복합체의 중합전환율은 HAP 첨가량이 늘어날수록 약간 감소하였으며 중합수축률은 HAP 변화량에의 의존성이 거의 없었다. 복합체의 기계적 물성은 HAP 함량이 증가할수록 간접인장강도는 증가하였고 굴곡강도는 큰 변화가 없었다. 그러나 그 값들은 치의학에서 규정한 값들을 상회하여 치과용 재료로의 응용 가능성이 매우 높음을 확인할 수 있었다.
To evaluate the dental restorative application of polymer composites filled with hydroxyapatite (HAP) which is an inorganic component of human bone material, dental properties of the polymer composites were investigated. A visible light system was utilized to activate the acrylate resin matrix of the composites. Maximum loading percentage of HAP in composite was 65 wt% and the depth of cure was 6.0 mm which can be applicable for dental restoration. With increasing the HAP content, degree of conversion of polymer composites was slightly decreased, however, polymerization shrinkage value was not varied. Diametral tensile strength value was enhanced with an increase of HAP content, however, there was no strict trend between flexural strength and HAP concentration. Anyhow, polymer composites prepared herein have superior mechanical properties sufficient specifications applicable to dental materials.
  1. Luts F, Rhilips RW, J. Prosthet. Dent., 50, 480 (1983) 
  2. Hosoda H, Yamada T, Inokoshi S, J. Prosthet. Dent., 64, 669 (1990) 
  3. Willems G, Lambrechts P, Braem M, Vanherle G, Quintessence Int., 24, 641 (1993)
  4. Moszner N, Salz U, Prog. Polym. Sci, 26, 535 (2001) 
  5. Anusavice KJ, Phillips' Science of Dental Materials, Saunders, London (1996)
  6. Cook WD, Johannson M, J. Biomed. Mater. Res., 21, 979 (1987) 
  7. Davy KWM, Kalachandra S, Pandain MS, Braden M, Biomaterials, 19, 2007 (1998) 
  8. Technical report, Dentsply Friadent Ceramed, Lakewood, CO, USA
  9. Sandner B, Baudach S, Davy KWM, Braden M, Clarke RL, J. Mater. Sci. -Mater. Med., 17, 39 (1997)
  10. Kim O, Shin WJ, Polym. Compos., 21, 176 (2001)
  11. Kim O, Lee T, J. Ind. Eng. Chem., 7(2), 78 (2001)
  12. Heigh JJ, Bell MF, White JU, Anal. Chem., 19, 293 (1947) 
  13. Watts DC, Cash AJ, Dent. Mater., 7, 281 (1991) 
  14. Becker C, Mueller P, Schmidt H, SPIE Proceedings., 3496, 88 (1998)
  15. Lee IB, J. Korean Acad. Conserv. Dent, 26, 134 (2001)
  16. Counsil on Dental Materials and Devices, New Am. Dent. Assoc. Spec. No. 27 for Direct Filling Resins, J. Am. Dent. Assoc, 94, 1191 (1977)
  17. Dentistry-Resin based filling materials, ISO Spec., 4049 (1978)
  18. Kim O, Lee T, Gong MS, J. Korean Ind. Eng. Chem., 13(3), 268 (2002)
  19. Kim O, Han S, Gong MS, J. Korean Ind. Eng. Chem., 15(7), 808 (2004)
  20. Davy KWM, Anseau MR, Odlyha M, Foster GM, Polym. Int., 43, 143 (1997) 
  21. Takada T, Macromol. Rapid Commun., 18, 461 (1997) 
  22. Puckett AD, Smith R, J. Prosthet. Dent., 68, 56 (1992) 
  23. Lee IB, Um CM, J. Korean Acad. Conserv. Dent, 25, 359 (2000)
  24. Asmussen E, Acta Odontol. Scand., 33, 337 (1975)
  25. Lee KH, Huh SY, Operative dentistry, Komoonsa, Seoul (2000)