Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.2, 125-131, April, 2006
디메틸에테르 합성 반응의 실험적 연구
Experimental Study on the Synthesis of Dimethyl Ether
E-mail:
초록
디메틸에테르(이하 DME)는 환경에 친화적인 새로운 청정에너지이다. 또한 DME는 다양한 에너지원으로부터 제조되어지며, 그 에너지원으로는 천연가스, 석탄, 바이오매스, 폐플라스틱 등이 있다. 이런 DME는 LPG와 매우 유사한 성질을 특징으로 가지고 있다. 이러한 결과로 DME는 LPG, 연료전지, 발전연료, 특히 디젤의 대체 연료로 고려되고 있으며, 2010년 대체 에너지로 기대되고 있다. DME 직접합성반응의 반응속도를 측정하기 위하여 서로 다른 조건인 온도 220~280℃, 합성가스 비율 1.2~3.0에서 실험을 수행하였다. 모든 실험은 혼성촉매를 사용하여 수행하였으며, 혼성촉매는 메탄올 합성 촉매와 메탄올 탈수촉매가 포함되어 있다. 반응속도는 랭미어 힌쉘우드 타입의 반응 메커니즘을 따르며, 메탄올 합성반응, 메탄올 탈수반응, 수성가스 전환반응, 이 세 가지 반응의 메커니즘을 고려하였다. 각 반응의 반응속도는 촉매상의 표면반응과 수소와 메탄올, 그리고 물의 해리흡작으로 결정하였다.
Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, biomass and spent plastic. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. Therefore, it is considered as an excellent substitute fuel for LPG, fuel cells, power plant, and especially diesel and is expected to be the alternative fuel by 2010.
The experimental study of the direct synthesis of DME was investigated under various conditions over a temperature range of 220∼280℃ , syngas ratio 1.2~3.0. All experiments were carried out with a hybrid catalyst, composed of a methanol synthesis catalyst (Cu/ZnO/Al2O3) and a dehydration catalyst ( -Al γ 2O3). The observed reaction rate follows qualitatively a Langmiur-Hinshellwood model as the reaction mechanism. Such a mechanism is considered with three
reactions; methanol synthesis, methanol dehydration and water gas shift reaction. From a surface reaction with dissociative adsorption of hydrogen, methanol, and water, individual reaction rate was determined.
- Ng KL, Chadwick D, Toseland BA, Chem. Eng. Sci., 54(15-16), 3587 (1999)
- Ogawa T, Inoue N, Shkada T, Ohno Y, J. Natural Gas Chem., 12, 219 (2003)
- Peng XD, Toseland BA, Tijm PJA, Chem. Eng. Sci., 54, 2792 (1999)
- Peng XD, Wang W, Toseland BA, Tijim PJ, Ind. Eng. Chem. Res., 38, 4381 (1999)
- Lu WZ, Teng LH, Xiao WD, Chem. Eng. Sci., 59(22-23), 5455 (2004)
- Vandenbussche KM, Froment GF, J. Catal., 161(1), 1 (1996)
- Natta G, Hydrogenation and dehydrogenation (deited by P. H. Emmett) 349-411 (1955)
- Seyfert W, Luft G, Chem. Ing. Tech., 57, 482 (1985)
- Villa P, Forzatti P, Ferrarls B, Garone G, Pasquon I, Ind. Eng. Chem. Process Des. Dev., 24, 12 (1985)
- Dybkjaer I, Chem. Econ. Eng. Rev., 13, 17 (1981)
- Graaf GH, Stamhuis EJ, Beenackers AAC, Chem. Eng. Sci., 43, 3185 (1998)
- Bercic G, Levec J, Ind. Eng. Chem. Res., 31, 1035 (1992)
- Schiffino RS, Merrill RP, J. Phys. Chem., 97, 6425 (1993)
- Klusacek K, Schneider P, Chem. Eng. Sci., 37, 1523 (1982)
- Wang G, Jiang L, Zhou Y, Cai Z, Pan Y, Zhao X, Li Y, Sun Y, Zhong B, Pang Z, Huang W, Xie K, J. Mol. Struct., 23, 634 (2003)
- Choi Y, Stenger HG, J. Power Sources, 124(2), 432 (2003)
- Gines MJ, Marchi AJ, Apesteguia CR, Appl. Catal. A: Gen., 154(1-2), 155 (1997)
- Xu MT, Lunsford JH, Goodman DW, Bhattacharyya A, Appl. Catal. A: Gen., 149(2), 289 (1997)
- Ramos FS, Duarte de Farias AM, Borges LEP, Monterio JL, Sousa-Aguiar EF, Appel LG, Catal. Today, 110, 39 (2005)
- Choi CW, Cho W, Ju WS, Lee SH, Baek YS, Row KH, Trans. Korean Hydro. New Energy Soc., 15, 283 (2004)
- Zhiliang W, Jinfu W, Fei R, Minghan H, Yong J, Sci. Technol., 9, 168 (2004)