Korean Journal of Chemical Engineering, Vol.23, No.6, 935-939, November, 2006
Capacity of Cr(VI) reduction in an aqueous solution using different sources of zerovalent irons
E-mail:
Zerovalent iron (ZVI) has drawn intense interest as an effective and inexpensive tool to enhance degradation of various environmental contaminants. Reduction of Cr(VI) to Cr(III) by ZVI merits environmental concern as a hazardous species is transformed into a non-hazardous one. Objectives of this research were to assess kinetics and capacity of Cr(VI) reduction by different sources of ZVIs, of which chemical parameters can base in situ application of ZVI to treat Cr(VI) contaminated water. Reduction kinetics were first-order and rapid showing that 50% of the initial Cr(VI) was reduced within 7.0 to 347 min depending on Cr(VI) concentration, temperature and ZVI source. The reduction rates were increased with decreasing the initial Cr(VI) concentrations and increasing the reaction temperatures. The J ZVI (Shinyo Pure Chemical Co., Japan) was more effective in Cr(VI) reduction than PU (Peerless Metal Powders, USA). The maximum reduction capacities of J and PU ZVIs at 25 oC were 0.045 and 0.042 mmol g.1 Fe0, respectively. A relatively higher value of the net reaction energy (Ea) indicated that Cr(VI) reduction by ZVI was temperature dependent and controlled by surface properties of ZVI. Chemical parameters involved in the Cr(VI) reduction by ZVI such as temperature quotient, kinetic rates, and stoichiometry indicated that the ZVI might be effective for in situ treatment of the Cr(VI) containing wastewater.
- Babel S, Kurniawan TA, J. Hazard. Mater., B97, 219 (2003)
- Bartlett RJ, James BR, “Chromium,” In Sparks, D. L. (ed.), Method of soil analysis, Part 3, Soil Sci. Soc. Am., Madison, WI, USA, 683 (1996)
- Blowes DW, Ptacek CJ, Jambor JL, Environ. Sci. Technol., 31, 3348 (1997)
- Choi DW, Kim YH, Korean J. Chem. Eng., 22(6), 894 (2005)
- Comfort SD, Shea PJ, Machacek TA, Satapanajaru T, J. Environ. Qual., 32, 1717 (2003)
- Dantas TND, Neto AAD, Moura MCP, Water Res., 35, 2219 (2001)
- EPA, Permeable reactive barrier technologies for contaminant remediation, EPA OSWER, USA, EPA/600/R-98/125 (1998)
- Fendorf SE, Li G, Environ. Sci. Technol., 30, 1614 (1996)
- Hamadi NK, Chen XD, Farid MM, Lu MGQ, Chem. Eng. J., 84(2), 95 (2001)
- Hernandez R, Zappi M, Kuo CH, Environ. Sci. Technol., 38, 5157 (2004)
- Holan ZR, Volesky B, Prasetyo I, Biotechnol. Bioeng., 41, 819 (1993)
- Khan SA Rehman R, Khan MA, Waste Manage., 15, 271 (1995)
- Lasaga AC, Kirkpatrick RJ, Kinetics of geochemical processes, Mineral. Soc. Am., Washington, DC, USA (1983)
- Lee DC, Park CJ, Yang JE, Jeong YH, Rhee HI, Appl. Microbiol. Biotechnol., 54(3), 445 (2000)
- Lee DH, Min YW, Rhee HI, Yang JE, Chun GT, Jeong YH, J. Microbiol. Biotechnol., 12, 292 (2002)
- Lee T, Lim H, Lee Y, Park JW, Chemosphere, 53, 479 (2003)
- Losi ME, Amrhein C, Frankenberger WT, J. Environ. Qual., 10, 1141 (1994)
- Namasivayam C, Ranganathan K, Environ. Pollut., 82, 255 (1993)
- Ok YS, Lim S, Kim JG, Korean J. Environ. Agric., 22, 177 (2003)
- Ouki SK, Kavannagh M, Waste Manage. Res., 15, 383 (1997)
- Park J, Comfort SD, Shea PJ, Machacek TA, J. Environ. Qual., 33, 1305 (2004)
- Ponders SM, Darab JG, Mallouk TE, Environ. Sci. Technol., 34, 2564 (2000)
- Prakorn R, Kwanta N, Ura P, Korean J. Chem. Eng., 21(6), 1212 (2004)
- Salibury FB, Ross C, Plant physiology, 4th eds. Wadsworth Publ. Co., USA (1992)
- Song DI, Kim YH, Shin WS, Korean J. Chem. Eng., 22(1), 67 (2005)
- Sparks DL, Environmental soil chemistry, Academic Press, USA (1995)
- Yang JE, Kim JS, Ok YS, Yoo KY, In press (2006)
- Yang JE, Kim JS, Ok YS, Yoo KY, Korean J. Environ. Agric., 24, 203 (2005)
- Yang JE, Kim YK, Kim JH, Park YH, Environmental impacts and management strategies of trace metals in soil and groundwater in the republic of Korea, In: Soil and Groundwater Pollution and Remediation, P. M. Huang and I. K. Iskander, eds., CRC Press, New York (2000)
- Yang JE, Skogley EO, Soil Sci. Soc. Am. J., 56, 408 (1992)