화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.2, 136-140, March, 2007
전하 이동을 이용한 실세스퀴옥산/폴리스티렌 하이브리드
Silsesquioxane/Polystyrene Hybrid Materials via Charge Transfer Interactions
E-mail:
초록
Carbazole(electron donor)그룹과 dinitrobenzene(electron acceptor)그룹을 이용하여 전하 이동 작용이 실세스퀴옥산/고분자 하이브리드의 형성 메커니즘으로서 작용할 수 있는지 살펴보는 연구를 진행하였다. 하이브리드 실험은 새롭게 합성된 poly(carbazole-styrene)(PS/D)와 dinitrobenzyl silsesquioxane(Cube/A)의 톨루엔 용액을 혼합/캐스팅을 하여 만들어진 필름을 이용하였으며 상분리가 없는 투명한 하이브리드 필름이 일부 조건에서 얻어졌다. PS/D및 Cube/A의 1H-NMR 분석, 그리고 하이브리드 필름들의 UV 흡수 실험은 실세스퀴옥산에 의한 입체 장애 효과가 없는 조건에서는 acceptor와 donor가 1:1로 전하 이동 착물을 형성할 수 있지만, 상분리가 없는 투명한 실세스퀴옥산 하이브리드는 acceptor/donor의 비율이 0.7:1 이하에서 형성된다는 것을 보여주었다. 이 결과들은 또 실세스퀴옥산 한 분자 당 평균 4개의 전하 이동 착물이 형성된다는 하이브리드 나노 구조에 대한 정보도 제공하였다.
Charge transfer interaction as a hybridization mechanism of silsesquioxane/polymer was tested using carbazole (electron donor) group and dinitrobenzene (electron acceptor) group. Hybridization test was conducted using films made from mixing/casting of poly(carbazole-styrene)(PS/D) and dinitrobenzyl silsesquioxane (Cube/A), and transparent hybrid films were successfully obtained under some conditions. 1H-NMR of PS/D and Cube/A, and UV absorption test of hybrid films showed that one acceptor and one donor can form one charge transfer complex when no silsesquioxane molecule was included in films, but transparent hybrids with no phase separation were obtained only at acceptor/donor ratios less than 0.7:1. These results also suggested that on average 4 charge transfer complexes form per one silsesquioxane.
  1. Wang SJ, Long CF, Wang XY, Li Q, Qi ZN, J. Appl. Polym. Sci., 69(8), 1557 (1998)
  2. Chen TK, Tien YI, Wei KH, J. Polym. Sci. A: Polym. Chem., 37(13), 2225 (1999)
  3. Doh JG, Cho I, Polym. Bull., 41, 511 (1998)
  4. Abramoff B, Covino J, J. Appl. Polym. Sci., 46, 1785 (1992)
  5. Pebaron PC, Wang Z, Pinnavaia T, J. Appl. Clay Sci., 15, 11 (1999)
  6. Reid CG, Greenberg AR, J. Appl. Polym. Sci., 39, 9951 (1990)
  7. Che TT, Carney RV, Khananarian G, Keosiuan RA, Bozo M, J. Non-Cryst. Solids, 102, 280 (1988)
  8. Sung PH, Lin CY, Eur. Polym., 33, 903 (1997)
  9. Loy DA, Shea KJ, Chem. Rev., 95, 1431 (1995)
  10. Novak BM, Adv. Mater., 5, 422 (1993)
  11. Laine RM, Choi J, Lee I, Adv. Mater., 13, 800 (2001)
  12. Choi J, Tamaki R, Kim SG, Laine RM, Chem. Mater., 15, 3365 (2003)
  13. Choi J, Kim SG, Laine RM, Macromolecules, 37(1), 99 (2004)
  14. Castex MC, Olivero C. Pichler G, Ades D, Cloutet E, Siove A, Synth. Met., 122, 59 (2001)
  15. Yasuda T, Imase T, Yamamoto T, Macromolecules, 38(17), 7378 (2005)
  16. Thomas KRJ, Lin JT, Tao YT, Chuen CH, Chem. Mater., 16, 5437 (2004)
  17. Jenekhe SA, Lu LD, Alam MM, Macromolecules, 34(21), 7315 (2001)
  18. Cowie JMG, Demaude A, Polym. Adv. Technol., 5, 178 (1994)
  19. Schneider HA, Cantow HJ, Percec V, Polym. Bull., 6, 617 (1982)
  20. Schneider HA, Epple U, Leikauf B, Neto HA, New Polym. Mater., 3, 115 (1992)
  21. Li X, Wu B, Huang J, Zhang J, Liu Z, Li H, Carbon, 411, 1645 (2002)
  22. Valentini L, Armentano I, Kenny JM, Bidali S, Mariani A, Thin Solid Films, 476(1), 162 (2005)
  23. Pientka M, Dyakonov V, Meissner D, Rogach A, Talapin D, Weller H, Lutsen L, Vanderzande D, Nanotechnology, 15, 163 (2004)
  24. Ballav N, Mater. Lett., 59, 3419 (2005)
  25. Shimazaki Y, Mitsuishi M, Ito S, Yamamoto M, Langmuir, 14(10), 2768 (1998)
  26. Shimazaki Y, Ito S, Tsutsumi N, Langmuir, 16(24), 9478 (2000)
  27. Shimazaki Y, Mitsuishi M, Ito S, Yamamoto M, Langmuir, 13(6), 1385 (1997)
  28. Setz S, Schneider HA, Makromol. Chem., 194, 233 (1993)
  29. Bolsinger M, Schneider HA, Makromol. Chem., 195, 2683 (1994)
  30. Simmons A, Natansohn A, Macromolecules, 23, 5127 (1990)
  31. Simmons A, Natansohn A, Macromolecules, 24, 3651 (1991)
  32. Odian G, Principles of Polymerization, Wiley Interscience, New York, 456 (1991)