Korean Journal of Chemical Engineering, Vol.24, No.3, 403-407, May, 2007
Effect of cocatalyst on the chemical composition distribution and microstructure of ethylene-hexene copolymer produced by a metallocene/Ziegler-Natta hybrid catalyst
E-mail:
A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for metallocene/Ziegler-Natta hybrid catalyst. The SMB was treated with methylaluminoxane (MAO) prior to the immobilization of TiCl4 and rac-Et(Ind)2ZrCl2. The prepared rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst was applied to the ethylenehexene copolymerization with a variation of cocatalyst species (polymerization run 1: triisobutylaluminum (TIBAL) and methylaluminoxane (MAO), polymerization run 2: triethylaluminum (TEA) and methylaluminoxane (MAO)). The effect of cocatalysts on the chemical composition distributions (CCDs) and microstructures of ethylene-hexene copolymers was examined. It was found that the catalytic activity in polymerization run 1 was a little higher than that in polymerization run 2, because of the enhanced catalytic activity at the initial stage in polymerization run 1. The chemical composition distributions (CCDs) in the two copolymers showed six peaks and exhibited a similar trend. However, the lamellas in the ethylene-hexene copolymer produced in polymerization run 1 were distributed over smaller sizes than those in the copolymer produced in polymerization run 2. It was also revealed that the rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst preferably produced the ethylene-hexene copolymer with non-blocky sequence when TEA and
MAO were used as cocatalysts.
Keywords:Metallocene/Ziegler-Natta Hybrid Catalyst;Ethylene-Hexene Copolymer;Chemical Composition Distribution (CCD);Microstructure;Cocatalyst
- Cho HS, Lee WY, Korean J. Chem. Eng., 19(4), 557 (2002)
- Muller AJ, Hernandez ZH, Arnal ML, Sabchez J, J. Polym. Bull., 39, 465 (1997)
- Kaminsky W, Sinn H, Adv. Organomet. Chem., 18, 99 (1980)
- Yoon JS, Oh JK, Hong KP, Lee IM, Korean J. Chem. Eng., 13(2), 207 (1996)
- Jeong BG, Nam DW, Hong SD, Lee SG, Park YW, Song KH, Korean J. Chem. Eng., 20(1), 22 (2003)
- Nowlin TE, Schregenberger SE, Shirodkar PP, Tsien GO, US Patent, 5,539,076 (1996)
- Razavi A, US Patent, 5,914,289 (1999)
- Jezequel M, Dufaud V, Ruiz-Garcia MJ, Carrillo-Hermosilla F, Neugebauer U, Niccolai GP, Lefebvre F, Bayard F, Corker J, Fiddy S, Evans J, Broyer JP, Malinge J, Basset JM, J. Am. Chem. Soc., 123(15), 3520 (2001)
- Tian J, Wang S, Feng Y, Li J, Collins S, J. Mol. Catal. A-Chem., 144, 137 (1999)
- Soga K, Kaminaka M, Macromol. Chem. Rapid Comm., 13, 221 (1992)
- Soga K, Kaminaka M, Macromol. Chem. Phys., 195, 1369 (1994)
- Cho HS, Chung JS, Lee WY, J. Mol. Catal. A-Chem., 159, 203 (2000)
- Cho HS, Choi YH, Lee WY, Catal. Today, 63(2-4), 523 (2000)
- Cho HS, Chung JS, Han JH, Ko YG, Lee WY, J. Appl. Polym. Sci., 70(9), 1707 (1998)
- Cho HS, Lee WY, J. Mol. Catal. A-Chem., 191, 155 (2003)
- Chung JS, Cho HS, Ko GY, Lee WY, J. Mol. Catal. A-Chem., 144, 61 (1999)
- Ko YG, Cho HS, Choi KH, Lee WY, Korean J. Chem. Eng., 16(5), 562 (1999)
- Cho HS, Choi DJ, Lee WY, J. Appl. Polym. Sci., 78(13), 2318 (2000)
- Cho HS, Choi KH, Choi DJ, Lee WY, Korean J. Chem. Eng., 17(2), 205 (2000)
- Charoenchaidet S, Chavadej S, Gulari E, J. Polym. Sci. A: Polym. Chem., 40(19), 3240 (2002)
- Wang Q, Li LD, Fan ZQ, J. Polym. Sci. A: Polym. Chem., 43(8), 1599 (2005)
- Hsieh ET, Randall JC, Macromolecules, 15, 1402 (1982)
- Wild L, Ryle TR, Knobeloch DC, Peat IR, J. Polym. Sci. A: Polym. Chem., 20, 441 (1982)
- Starch P, Polym. Int., 40, 111 (1996)
- Czaja K, Sacher B, Bialek M, J. Therm. Anal. Catal., 67, 547 (2002)
- Park HW, Chung JS, Baeck SH, Song IK, J. Mol. Catal. A-Chem., 255, 69 (2006)
- Hosoda D, Polym. J., 20, 383 (1988)