화학공학소재연구정보센터
Polymer(Korea), Vol.15, No.1, 27-33, February, 1991
생체분해성 Poly(γ-benzyl L-glutamate)/Poly(ethylene oxide)/Poly(γ-benzyl L-glutamate) 블록 공중합체 미립자에서 Cytarabine의 약물방출
Release of Cytarabine from Biodegradable Poly(γ-benzyl L-glutamate)/Poly(ethylene oxide)/Poly(γ-benzyl L-glutamate)Block Copolymer Microsphere
초록
소수성 poly(γ-benzyl L-glutamate)와 친수성 poly(ethylene oxide)의 ABA형 블록 공중합체 (GEG)를 의약전달 matrix로 연구하였다. 항암제인 cytarabine을 함유한 PBLG동종중합체와 GEG블록 공중합체의 미립자가 용매 증발법(solvent evaporation method)에 의하여 제조되었고, 그들로부터 cytarabine의 방출실험이 행해졌다. 중합체들의 미립자 크기는 직경이 0.3에서 1μm의 크기로서 대체로 원형을 나타냈다. 블록 공중합체에서의 cytarabine의 방출거동은 블록 공중합체의 친수성인 폴리에칠렌옥사이드의 함량에 의존되었고, 친수성이 커질수록 방출량은 증가되었다.
GEG block copolymers consisting of poly(γ-benzyl L-glutamate) as the A component and poly(ethylene oxide) as the B component were investigated as drug delivery matrix. PBLG homopolymer and GEG block copolymer microspheres containing anticancer drug. cytarabine were prepared by a solvent evaporation process and the release patterns of cytarabine from the microspheres were investigated in vitro. The size of PBSG homopolymer and GEG block copolymer microspheres was ranged from 0.3 to 1 μm in diameter and the shape of the microspheres was almost round. The release pattern of cytarabine from the block copolymer microsphere was dependent on the hydrophilicity of the block copolymers. The more hydrophilic of the block copolymers, the faster release rate of cytarabine from the microspheres.
  1. Williams DF, CRC Series in Biocompatibility Vol. II, Williams, D.F. (d.), CRC Press, Florida, 129 (1981)
  2. Wood DA, Int. J. Pharm., 7, 1 (1980) 
  3. Heller J, Biomaterials, 1, 51 (1980) 
  4. Frazza EJ, Schmitt EE, J. Biomed. Mater. Res., 1, 43 (1979)
  5. Gilding DK, Reed AM, Polymer, 20, 1459 (1979) 
  6. Pitt CG, J. Pharm. Sci., 68, 1534 (1979) 
  7. Kovacs K, Kotai A, Szabo I, Nature, 185, 266 (1960) 
  8. Miyama T, Mori S, Takeda Y, U.S. Patent, 3,371,069 (1968)
  9. Rowland GF, O'Neill GJ, Davies DAL, Nature, 255, 487 (1975) 
  10. Anderson JM, Gibbons DF, Martin RL, Hiltner A, Woods R, J. Biomed. Mater. Res., 5, 197 (1974)
  11. Sidman KR, Research Monograph Series, 4, NIDA, D.R. Willette, 33 (1976)
  12. Marck KW, Wildevu RH, Sederel WL, Bantjes A, Feijen J, J. Biomed. Mater. Res., 11, 405 (1977) 
  13. Negishi N, Bennett DB, Cho CS, Jeong SY, VanHeeswijk WAR, Feijen J, Kim SW, Pharm. Res., 4, 305 (1987) 
  14. Feijen J, Gregonis D, Anderson C, Peterson RV, Anderson J, J. Pharm. Sci., 69, 871 (1980) 
  15. Neri P, Antoni G, Benvenuti F, Cocola F, Gazzei G, J. Med. Chem., 16, 893 (1973) 
  16. Sela M, Science, 166, 1365 (1969) 
  17. Leonard F, J. Appl. Polym. Sci., 10, 259 (1966) 
  18. Mungiu C, J. Polym. Sci. Polym. Symp., 66, 189 (1979)
  19. Wirick MG, J. Water Pollut. Control Fed., 46, 512 (1974)
  20. Brown JB, Annu. Surg., 152, 534 (1960)
  21. Baily FE, Polyethylene Oxide, Academic Press, New York (1976)
  22. Knectal AH, Perfum. J., 78, 95 (1963)
  23. Gilding DK, Biocompatibility of Clinical Implant Materials, Vol. II, CRC Series, D.F. Williams d., 214 (1983)
  24. Allcock HR, Neenan TX, Kossa WC, Macromolecules, 15, 693 (1982) 
  25. Roggendorf E, J. Biomed. Mater. Res., 10, 123 (1976) 
  26. Rosen H, Chang J, Wnek G, Linhardt R, Langer R, Biomaterials, 4, 131 (1983) 
  27. Nishihara T, Trans. Am. Sco. Artif. Int. Org., 13, 243 (1967)
  28. Agishi T, J. Biomed. Mater. Res., 6, 119 (1975) 
  29. Ikada Y, J. Bioactive Compatible Polym., 3, 126 (1988)
  30. Tabata Y, Ph.D. Thesis, Kyoto, Univ. (1987)
  31. Lee KC, Int. J. Pharm., 44, 49 (1988) 
  32. Cho CS, Song SC, Kim SW, Ryang DW, Sung YK, Kim KY, J. Kosombe, 8, 199 (1987)
  33. Cho CS, Kim SW, J. Control. Release, 7, 283 (1988) 
  34. Cho CS, Kim SW, Makromol. Chem., 191, 981 (1990) 
  35. Fox HY, Zisman WA, J. Colloid Sci., 7, 109 (1952) 
  36. Baker RE, Tuttle ME, Lonsdale HK, Aynes JW, J. Pharm. Sci., 68, 20 (1979)