화학공학소재연구정보센터
Polymer(Korea), Vol.19, No.6, 903-912, November, 1995
Polyester Elastomer/poly(vinyl chloride) Blends의 물성
Physical Properties of Polyester Elastomer/Poly( vinyl chloride) Blends
초록
폴리염화비닐(PVC)과 hard-세그먼트인 폴리부칠렌테레프탈레이트 (PBT)와 soft-세그먼트인 폴리테트라메틸렌에테르글라이콜 (PTMG)로 구성된 폴리에스테르 엘라스토머(PEL) 블렌드를 이축압출기를 사용하여 제조하였다. 이 블렌드를 사출성형하여 시편을 제조하고, 또한 다른 한편으로는 이 블렌드를 용융 압축시켜 블렌드 필름을 제조하고, 이 블렌드 필름을 모세관 레오메타로 고상압출시켜 연신필름을 제조하셨다. 이 블렌드의 열적, 기계적 및 동역학적 특성을 조사하였다. 블렌드의 Tg는 PEL 함량이 증가할수록 감소하였고, 연신비가 증가할수록 증가하였다. 블렌드의 결정화도는 PEL 함량 및 인신비 증가와 더불어 증가하였다. PEL/PVC 블렌드의 저장탄성율은 연신비의 증가와 더불어 증가하였고, 반면 온도의 증가와 더불어 감소하였다. 블렌드의 인장강도는 연신비와 PEL 함량의 증가와 더불어 증가하였다.
Blends of poly(viny1 chloride) (PVC) and segmented polyester elastomer(PEL) in which a hard-segment is PBT and soft-segment is PTMG were prepared by a twin-screw extruder. Specimens were prepared by injection molding. Blend films were prepared by solid state extrusion with capillary rheometer at 50℃. Thermal, mechanical, and dynamic mechanical properties of these blends were investigated. It was found that the Tg of these blends decreased with increasing PEL content and increased with increasing draw ratio. The crystallinity of these blends increased with increasing draw ratio and PEL content. Storage modulus of these blends increased with increasing draw ratio and decreased with increasing temperature. The tensile strength of these blends increased with increasing draw ratio and PEL content.
  1. Noolandi J, Polym. Eng. Sci., 24, 70 (1984) 
  2. Blaga A, Feldman D, Banu D, J. Appl. Polym. Sci., 29, 3421 (1984) 
  3. Hur DS, J. Korean Inst. Rubber, 24, 26 (1989)
  4. Lee SH, Lucky Polym. Technol., 10, 71 (1989)
  5. Inoue T, Snomura F, Ougizawa T, Miyasaka K, Rubber Chem. Technol., 58, 873 (1985)
  6. Cella RJ, J. Polym. Sci. C: Polym. Lett., 42, 727 (1973)
  7. Danesi S, Porter RS, Polymer, 19, 448 (1978) 
  8. Dao KC, Polymer, 25, 1527 (1984) 
  9. Baer M, J. Appl. Polym. Sci., 16, 1109 (1972) 
  10. Bragaw CG, "Advances in Chemistry," Ser. 99, 86, Am. Chem. Soc., Washington, D.C. (1971)
  11. Speri WM, Patrick GR, Polym. Eng. Sci., 15, 668 (1975) 
  12. Riew CK, Rowe EH, Siebert AR, "Advances in Chemistry," Ser. 154, Am. Chem. Soc., Washington D.C. (1976)
  13. Miller S, TIS Report 79MAL005, General Electric Company, Louisville, KY (1978)
  14. Miller S, Proceedings Inst. Conf. Toughening of Plastics, Paper 8, Plastics and Rubber Institute, London (1978)
  15. Nishi T, Kwei TK, Wang TT, J. Appl. Phys., 46, 4157 (1975) 
  16. Hourston DJ, Hughes ID, Rubber Conf., 1, 13 (1977)
  17. Nishi T, Kwei TK, J. Appl. Polym. Sci., 20, 1331 (1976) 
  18. Hytrel Bulletin 1-25, Blends of Hytrel Polyester Elastomer with PVC, E.I. du Pont de Nemours and Company, Delaware (1976)
  19. Thomas S, Kuriakose B, Gupta BR, De SK, Plast. Rubber Process Appl., 6, 85 (1986)
  20. Thomas S, Gupta BR, De SK, Radiat. Phys. Chem., 28, 283 (1986)
  21. Thomas S, Gupta BR, De SK, J. Vinyl Tech., 9, 77 (1987)
  22. Thomas S, Gupta BR, De SK, J. Appl. Polym. Sci., 34, 2053 (1987) 
  23. Coleman MM, Zarian J, Varnell DF, Painter PC, J. Polym. Sci. C: Polym. Lett., 15, 745 (1977)
  24. Coleman MM, Varnell DF, Macromolecules, 13, 1403 (1980)
  25. Mead WT, Desper CR, Porter RS, J. Polym. Sci. B: Polym. Phys., 17, 859 (1979)
  26. Southern JH, Porter RS, J. Appl. Polym. Sci., 14, 2305 (1970) 
  27. Takayanagi M, "Viscoelastic Properties of Crystalline Polymers," Mem. of the Fac. of Eng., Kyushu University, 23, 1 (1963)