화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.20, No.1, 15-26, March, 2008
An instability criterion for viscoelastic flow past a confined cylinder
E-mail:
It has been known that there is a viscoelastic instability in the channel flow past a cylinder at high Deborah (De) number. Some of our numerical simulations and a boundary layer analysis indicated that this instability is related to the shear flow in the gap between the cylinder and the channel walls in our previous work. The critical condition for instability initiation may be related to an inflection velocity profile generated by the normal stress near the cylinder surface. At high De, the elastic normal stress coupling with the streamline curvature is responsible for the shear instability, which has been recognized by the community. In this study, an instability criterion for the flow problem is proposed based on the analysis on the pressure gradient and some supporting numerical simulations. The critical De number for various model fluids is given. It increases with the geometrical aspect ratio h/R (half channel width/cylinder radius) and depends on a viscosity ratio β (polymer viscosity/total viscosity) of the model. A shear thinning first normal stress coefficient will delay the instability. An excellent agreement between the predicted critical Deborah number and reported experiments is obtained.
  1. Avagliano A, Phan-Thien N, J. Fluid Mech., 359, 217 (1998)
  2. Avagliano A, Phan-Thien N, J. Non-Newton. Fluid Mech., 84(1), 19 (1999)
  3. Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric liquids, vol.1: fluid mechanics, 2nd ed.,Wiley, New York (1987)
  4. Byars JA, Oztekin A, Brown RA, McKinley GH, J. Fluid Mech., 271, 173 (1994)
  5. Byars JA, Experimental characterization of viscoelastic flow instabilities, Ph.D thesis, MIT, Cambridge, MA 02139, USA (1996)
  6. Caola AE, Joo YL, Armstrong RC, Brown RA, J. Non-Newton. Fluid Mech., 100(1-3), 191 (2001)
  7. Dou HS, Viscous instability of inflectional velocity profile, Proc.of the foruth international conference on fluid mechanics, Ed. by F. Zhuang and J. Li, Tsinghua University Press & Springer-Verlag, Beijing, 76-79 (2004)
  8. Dou HS, Inter. J. of Non-Linear Mech., http://arxiv.org/abs/nlin.CD/0501049, 41, 512 (2006)
  9. Dou HS, Physics of flow instability and turbulent transition in shear flows, Technical report, National university of singapore, 2006. http://www.arxiv.org/abs/physics/0607004. Also as part of the invited lecture: H.-S. Dou, Secret of Tornado, International workshop on geophysical fluid dynamics and scalar transport in the tropics, NUS, Singapore, 13 Nov. -8 Dec (2006)
  10. Dou HS, Three important theorems for flow stability, Proc. of the fifth international conference on fluid mechanics, Ed. by F. Zhuang and J. Li, Tsinghua University press & Springer-Verlag, Beijing, 56-70. http://www.arxiv.org/abs/physics/0610082 (2007)
  11. Dou HS, Khoo BC, Yeo KS, Instability of Taylor-Couette flow between concentric rotating cylinders, Inter. J. Thermal Science, accepted and in press, http://arxiv.org/abs/physics/0502069 (2007)
  12. Dou HS, Phan-Thien N, J. Non-Newton. Fluid Mech., 87(1), 47 (1999)
  13. Dou HS, Phan-Thien N, Chem. Eng. Sci., 62(15), 3909 (2007)
  14. Groisman A, Steinberg V, Phys. Fluids, 10, 2451 (1998)
  15. Groisman A, Steinberg V, Nature, 405, 53 (2000)
  16. Huilgol RR, Phan-Thien N, Fluid mechanics of viscoelasticity: general principles, constitutive modelling and numerical techniques, Rheology series vol. 6, Elsevier, Amsterdam (1997)
  17. Hulsen MA, Fattal R, Kupferman R, J. Non-Newton. Fluid Mech., 127(1), 27 (2005)
  18. Joo YL, Shaqfeh ESG, Phys. Fluids A, 4, 524 (1992)
  19. Kim JM, Kim C, Ahn KH, Lee SJ, J. Non-Newton. Fluid Mech., 123(2-3), 161 (2004)
  20. Kumar S, Homsy GM, J. Non-Newton. Fluid Mech., 83(3), 249 (1999)
  21. Larson RG, Rheol. Acta, 31, 213 (1992)
  22. Larson RG, Shaqfeh ESG, Muller SJ, J. Fluid Mech., 218, 573 (1990)
  23. McKinley GH, Armstrong RC, Brown RA, Phil. Trans. R. Soc. Lond. A, 344, 265 (1993)
  24. McKinley GH, Pakdel P, Oztekin A, J. Non-Newton. Fluid Mech., 67(1-3), 19 (1996)
  25. Olagunju DO, Cook LP, J. Non-Newton. Fluid Mech., 47, 93 (1993)
  26. Oliveira PJ, Miranda AIP, J. Non-Newton. Fluid Mech., 127(1), 51 (2005)
  27. Pakdel P, McKinley GH, Phys. Rev. Lett., 77, 2459 (1996)
  28. Phan-Thien N, J. Non-Newton. Fluid Mech., 17, 37 (1985)
  29. Schlichting H, Gersten K, Boundary layer theory, Springer, 8th Ed., Berlin, 415-494 (2000)
  30. Shaqfeh ESG, Annu. Rev. Fluid Mech., 28, 129 (1996)
  31. Shiang AH, Oztekin A, Rockwell D, Exp. Fluids, 28, 128 (2000)
  32. Smith MD, Armstrong RC, Brown RA, Sureshkumar R, J. Non-Newton. Fluid Mech., 93(2-3), 203 (2000)
  33. Sureshkumar R, Smith MD, Armstrong RC, Brown RA, J. Non-Newton. Fluid Mech., 82(1), 57 (1999)
  34. White FM, Viscous fluid flow, McGraw-Hill, New York, 2nd Ed., 335-393 (1991)
  35. Wilson HJ, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 364, 3267 (2006)