Korean Journal of Chemical Engineering, Vol.25, No.5, 1026-1030, September, 2008
Formic acid oxidation by carbon-supported palladium catalysts in direct formic acid fuel cell
E-mail:
The oxidation of formic acid by the palladium catalysts supported on carbon with high surface area was investigated. Pd/C catalysts were prepared by using the impregnation method. 30 wt% and 50 wt% Pd/C catalysts had a high BET surface area of 123.7 m2/g and 89.9 m2/g, respectively. The fuel cell performance was investigated by changing various parameters such as anode catalyst types, oxidation gases and operating temperature. Pd/C anode catalysts had a significant effect on the direct formic acid fuel cell (DFAFC) performance. DFAFC with Pd/C anode catalyst showed high open circuit potential (OCP) of about 0.84 V and high power density at room temperature. The fuel cell with 50 wt% Pd/C anode catalyst using air as an oxidant showed the maximum power density of 99 mW/cm2. On the other hand, a fuel cell with 50 wt% Pd/C anode catalyst using oxygen as an oxidant showed a maximum power density
of 163 mW/cm2 and the maximum current density of 590 mA/cm2 at 60 ℃.
- Ha S, Adams B, Masel RI, J. Power Sources, 128(2), 119 (2004)
- Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83 (2002)
- Kim JS, Yu JK, Lee HS, Kim JY, Kim YC, Han JH, Oh IH, Rhee YW, Korean J. Chem. Eng., 22(5), 661 (2005)
- Sauk J, Byun J, Kang Y, Kim H, Korean J. Chem. Eng., 22(4), 605 (2005)
- Rhee YW, Ha SY, Masel RI, J. Power Sources, 117(1-2), 35 (2003)
- Jiang J, Kucernak A, J. Electroanal. Chem., 520(1-2), 64 (2002)
- Park S, Xie Y, Weaver MJ, Langmuir, 18(15), 5792 (2002)
- Lovic JD, Tripkovic AV, Gojkovic SLJ, Popovic KD, Tripkovic DV, Olszewski P, Kowal A, J. Electroanal. Chem., 581(2), 294 (2005)
- Capon D, Parsons R, J. Electroanal. Chem., 65, 285 (1975)
- Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM, Phys. Chem. Chem. Phys., 5, 4242 (2003)
- Ha S, Larsen R, Masel RI, J. Power Sources, 144(1), 28 (2005)
- Liu ZL, Hong L, Tham MP, Lim TH, Jiang HX, J. Power Sources, 161(2), 831 (2006)
- Ahmadi TS, Wang ZL, Green TC, Henglein A, Elsayed MA, Science, 272(5270), 1924 (1996)
- Liu ZL, Lee JY, Han M, Chen WX, Gan LM, J. Mater. Chem., 12, 2453 (2002)
- Okitsu K, Yue A, Tanabe S, Matsumoto H, Chem. Mater., 12, 3006 (2002)
- Fujimoto T, Teraushi S, Umehara H, Kojima I, Chem. Mater., 13, 1057 (2001)
- Yu WY, Tu WX, Liu HF, Langmuir, 15(1), 6 (1999)
- Baghurst DR, Chippindale AM, Mingos DMP, Nature, 332, 311 (1988)
- Komarneni S, Li DS, Newalkar B, Katsuki H, Bhalla AS, Langmuir, 18(15), 5959 (2002)
- Chen WX, Lee JY, Liu ZL, Chem. Commun., 2588 (2002)
- Larsen R, Ha S, Zakzeski J, Masel RI, J. Power Sources, 157(1), 78 (2006)
- Yu JK, Lee HS, Kim KH, Kim YC, Han JH, Oh IH, Rhee YW, Korean Chem. Eng. Res., 44(3), 314 (2006)
- Zhu YM, Ha SY, Masel RI, J. Power Sources, 130(1-2), 8 (2004)
- Zhang XL, Hayward DO, Mingos DMP, Ind. Eng. Chem. Res., 40(13), 2810 (2001)