화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.4, 423-428, July, 2008
A simple and efficient Suzuki reaction catalyzed by palladium-modified nanopore silica under solvent-free conditions
E-mail:,
In this paper our recent results of the Suzuki reaction using [Pd(NH3)4]2+ -modified nanopore silica under solvent-free conditions are described. [Pd(NH3)4]2+ -modified nanopore silica was prepared by impregnation using an aqueous solution of [Pd(NH3)4]Cl2 in water or in acetonitrile. The BET surface area, BJH mean pore diameter and pore volume are 138.8 m2/g, 8.7 nm, and 0.34 cm3/g, respectively, and the pore size distribution shows a single peak at around 5 nm in diameter. It has been shown that the Suzuki reaction is performed in excellent yield by using Pd-modified nanopore silica under solvent-free conditions heated at 90.100 8C for 3.5 h. It has been found that aryl bromides can be coupled with aryl boronic acids in excellent yield under solvent-free condition. Phenyl iodide was also coupled with phenyl boronic acids in excellent yield, whereas phenyl chloride gave product in poor yield. And KF, CsF or Bu4NF were also found to be a convenient base additive.
  1. Miyaura N, Suzuki A, Chem. Rev., 95(7), 2457 (1995)
  2. Suzuki A, J. Organomet. Chem., 576, 147 (1999)
  3. Kotha S, Lahiri K, Kashinath D, Tetrahedron, 58, 9633 (2002)
  4. Ruiz JR, Jimenez-Sanchidrian C, Mora M, Tetrahedron, 62, 2922 (2006)
  5. Cepanec I, Synthesis of Biaryls, Elsevier, Amsterdam, 2004
  6. Miyaura N, Yanagi T, Suzuki A, Synth. Commun., 11, 513 (1985)
  7. Chanthavong F, Leadbeatert NE, Tetrahedron Lett., 47, 1909 (2006)
  8. Artok L, Bulut H, Tetrahedron Lett., 45, 3881 (2004)
  9. de Meijere A, Diederich F (Eds.), Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004
  10. Bork JT, Lee JW, Chang YT, Tetrahedron Lett., 44, 6141 (2003)
  11. Augustine RL, Heterogeneous Catalysis for the Synthetic Chemist, Marcel Dekker, New York, 1996
  12. Chang W, Ahn BJ, Int. J. Nanotechnol., 2, 186 (2006)
  13. Kim JG, Lee JH, Kim IT, Kim EH, J. Ind. Eng. Chem., 13(2), 292 (2007)
  14. Ku HJ, Ahn BJ, Jeon BE, Chang W, J. Ind. Eng. Chem., 11(6), 841 (2005)
  15. Gruber M, Chouzier S, Koehler K, Djakovitch L, Appl. Catal. A: Gen., 265(2), 161 (2004)
  16. Bai L, Xian J, Zhang Y, Green Chem., 5, 615 (2003)
  17. Rajagopal R, Jarikore DV, Srinivasan KV, Chem. Commun. (2002) 616
  18. Mathews CJ, Smith PJ, Welton T, Chem. Commun. (2000) 1249
  19. Gordon RS, Holmes AB, Chem. Commun. (2002) 640
  20. Early TR, Gordon RS, Carroll MA, Holmes AB, Shute RE, McConvey IF, Chem. Commun. (2001) 1966
  21. Blettner CG, Konig WA, Stenzel W, Schotten T, J. Org. Chem., 64, 3885 (1999)
  22. Chanthavong F, Leadbeater NE, Tetrahedron Lett., 47, 1909 (2006)
  23. Arvela RK, Leadbeater NE, Mack TL, Kormos CM, Tetrahedron Lett., 47, 217 (2006)
  24. Doxsee KM, Hutchinson JE, Green Organic Chemistry, Brooks Cole, Singapore, 2004
  25. Chang W, Shin J, Kim M, Ahn BJ, J. Ind. Eng. Chem., 7(1), 62 (2001)
  26. Chang W, Shin J, Song JE, Ahn BJ, J. Korean Ind. Eng. Chem., 15(1), 146 (2004)
  27. Wang HP, Lin KS, Huang YJ, Li MC, Tsaur LK, J. Hazard. Mater., 58, 147 (1998)
  28. Han CS, Lee HY, Roh Y, Int. J. Nanotechnol. 2006 (2) (2006) 236
  29. Han CS, Lee HY, Chon H, Proc. Ann. Meeting NanoSci. Technol. (2004) 185
  30. Han CS, Lee HY, Kim MH, Mo HR, Lim MO, Kim JH, Lim EJ, Jung DY, Proc. Ann. Meeting Nanosci. Technol. (2004) 151
  31. Ahn BJ, Gang MS, Chae K, Oh Y, Shin J, Chang W, J. Ind. Eng. Chem., 14, 000 (2008)
  32. Chon H, Chon MJ, Han CS, Korean Patent 0396457 (2003)
  33. Bulut H, Artok L, Yilmaz S, Tetrahedron Lett., 44, 289 (2003)
  34. Djakovitch L, Koehler K, J. Mol. Catal. A: Chem., 142, 275 (1999)
  35. Tanaka K, Solvent-free Organic Synthesis, Wiley-VCH, Weinheim, 2003
  36. Wolfe JP, Buchwald SL(Eds.), Angew. Chem. Int., 38, 2413 (1999)
  37. Wolfe JP, Singer RA, Yang BH, Buchwald SL, J. Am. Chem. Soc., 121(41), 9550 (1999)
  38. Namboodiri VV, Varma RS, Green Chem., 3, 146 (2001)