화학공학소재연구정보센터
Clean Technology, Vol.14, No.4, 248-255, December, 2008
초임계이산화탄소의 존재 하에서 이온성액체의 부피팽창
Volume Expansion of Ionic Liquids in the Presence of Supercritical Carbon Dioxide
E-mail:
초록
초임계이산화탄소의 존재 하에서 세 가지 이온성액체(IL)의 부피팽창을 압력 32 MPa까지, 온도 313.15에서 333.15 K까지 뷰셀(view cell) 내에서 측정하였다. 이미다졸유도체 이온성액체인 육불화 1-부틸-3-메틸이미다졸([bmim][PF6]), 사불화 1-부틸-3-메틸이미다졸([bmim][BF4]), 사불화 1-옥틸-3-메틸이미다졸([omim][BF4])을 연구에 사용하여, 압력, 온도, 양이온과 음이온의 성질, 그리고 수분 함량이 CO2의 흡수에 의한 이온성액체의 부피팽창에 미치는 영향을 실험적으로 조사하였다. 부피팽창은 긴 양이온 알킬그룹을 가지고 있는 이온성액체 및 음이온 극성이 작은 이온성액체에서 크게 나타났다. 수분함량이 적을수록, 온도가 낮을수록, 그리고 압력이 높을수록 이온성액체상의 부피는 더 크게 나타났다.
The volume expansion of three ionic liquids (ILs) in the presence of supercritical carbon dioxide has been measured at pressures up to 32 MPa and at temperatures from 313.15 to 333.15 K in a high-pressure view cell. The imidazolium-derivative ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), and 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]) were employed in this research. The effects of pressure, temperature, nature of anion and cation as well as the water content on the volume expansion of ILs by absorbing CO2 were investigated experimentally. The volume expansion was higher for the ILs with longer cationic alkyl group and for the ILs with lower anion polarity. The lower the water content, the lower the temperature, or the higher the pressure, the higher was the expansion of IL phase.
  1. Keskin S, Kayrak-Talay D, Akman U, Hortacsu O, J. Supercrit. Fluids, 43(1), 150 (2007)
  2. Kim HS, Kim YJ, News Inf. Chem. Eng.,, 21, 200 (2003)
  3. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ, J. Am. Chem. Soc., 126(16), 5300 (2004)
  4. Dupont J, de Souza RF, Suarez PAZ, Chem. Rev., 102(10), 3667 (2002)
  5. Welton T, Chem. Rev., 99(8), 2071 (1999)
  6. Olivier-Bourbigou H, Magna L, J. Mol. Catal. A-Chem., 182(1), 419 (2002)
  7. Aki SNVK, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108(52), 20355 (2004)
  8. Wu W, Zhang J, Han B, Chen J, Liu Z, Jiang T, He J, Li W, Chem. Commun., 1412 (2003)
  9. Blanchard LA, Brennecke JF, Ind. Eng. Chem. Res., 40(1), 287 (2001)
  10. Blanchard LA, Gu ZY, Brennecke JF, J. Phys. Chem. B, 105(12), 2437 (2001)
  11. Fu D, Sun X, Pu J, Zhao S, J. Chem. Eng. Data, 51, 371 (2006)
  12. Perez-Salado Kmps A, Tuma D, Xia J, Maurer G, J. Chem. Eng. Data, 48, 746 (2003)
  13. KumeIan J, Perez-Salado Kamps A, Tuma D, Maurer G, J. Chem. Eng. Data, 51, 1802 (2006)
  14. Gu Z, Brennecke JF, J. Chem. Eng. Datu, 47, 339 (2002)
  15. Lim BH, Kim JW, Paek SM, Son BK, Lee YL, Lee CS, Lee H, Ra CS, Shim JJ, Clean Technol., 12(3), 128 (2006)
  16. Gallagher PM, Coffey MP, Krukonis VJ, Kasutis N, "Gas Antisolvent Recrystallization: New Process to Recrystallize Compounds Insoluble is Supercritical Fluids," American Chemical Society Symposium Series no. 406, ACS (1989)
  17. Lim BH, Choe WH, Shim JJ, Ra CS, Tuma D, Lee H, Lee CS, J. Chem Eng. Data (2008)
  18. Kim YS, Choi WY, Jang JH, Yoo KP, Lee CS, Fluid Phase Equilib., 228, 439 (2005)
  19. Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45, 282 (2008)
  20. Kazarian SG, Briscoe BJ, Welton T, Chem. Commun., 2047 (2000)