화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.6, 971-978, November, 1996
카본블랙 혼합에 따른 천연고무의 방진특성에 관한 연구
A Study on the Vibration Damping of Natural Rubber Vulcanizates Filled with Various Carbon Blacks
초록
카본블랙을 첨가한 가황 천연고무의 방진특성에 미치는 카본블랙 특성의 영향을 실험적으로 고찰하였다. 특히 카본블랙 종류 및 첨가량에 따른 가황 천연고무의 정적탄성율, 경도, 동비율, loss tangent, 동적점성율의 변화를 해석하고 방진성능과의 관계를 검토하였다. 가황 천연고무의 정적탄성율 변화는 입자경이 작은 카본블랙을 첨가한 경우 Guth-Gold식으로 예측되는 바와 잘 일치함이 관찰되었다. 한편 카본블랙의 요오드흡착가가 클수록 가황 천연고무의 경도 중가율은 높았다. 방진특성의 중요한 인자인 동비율과 loss tangent의 경우 요오드흡착가와 디부틸프탈레이트 흡착가 비가 클수록 높아졌다. 방진특성의 최적을 위한 조건을 카본블랙의 비표면적으로 나타낼 수 있었다.
The effects of carbon black properties on the vibration damping of vulcanized natural rubber (NR) were studied empirically. Especially, changes of static modulus, hardness, dynamic ratio, loss tangent, and dynamic viscosity depending on the type and content of carbon black in the NR vulcanizate were investigated. It was observed that changes of static modulus closely followed trends predicted by Guth-Gold equation for the carbon black filled NR vulcanizate in case of carbon black of small particle. Rate of hardness increase depending on carbon black content increased on the increase of iodine adsorption value of carbon black. Two parameters, dynamic ratio and loss tangent, important for vibration damping were found to increase with increasing ratio of iodine adsorption value and dibutyl phthalate absorption value of carbon black. Optimized conditions for vibration damping with carbon black filled NR vulcanizate were suggested in terms of specific surface area of carbon black.
  1. Kunizawa S, "Selection Point of the Rubber Materials," The Standard Association of Japan, p. 140 (1979)
  2. Gobel EF, Brichta AM, "Rubber Spring Design," Newnes-Butterworths (1974)
  3. Nakauchi H, J. Soc. Rubber Ind.(Japan), 64(12), 719 (1991)
  4. Payne AR, Whittaker RE, Rubber Chem. Technol., 44, 440 (1971)
  5. Yamashita S, J. Soc. Rubber Ind.(Japan), 64(12), 752 (1991)
  6. Abe M, J. Soc. Rubber Ind.(Japan), 64(2), 76 (1991)
  7. Elliot DJ, "Developments in Rubber Technology," vol. 1, L.A. Whelan and K.S. Lee eds., Applied Science Publishers, London (1979)
  8. Saville B, Watson AA, Rubber Chem. Technol., 40, 140 (1967)
  9. ASTM D3182, vol. 09. 01 (1995)
  10. ASTM D3192, vol. 09. 01 (1995)
  11. ISO48, Vulcanised Rubber-Determination of Hardness (1979)
  12. Blow CM, Hepburn C, "Rubber Technology and Manufacture," 2nd ed., The Plastics and Rubber Institute (1982)
  13. KS M6518
  14. Payne AR, J. Appl. Polym. Sci., 8, 2661 (1964) 
  15. Gregory MJ, Polym. Testing, 4, 211 (1984) 
  16. Medalia AI, Rubber Chem. Technol., 45, 1171 (1972)
  17. Ulmer JD, Chirico VE, Dizon ES, Rubber Chem. Technol., 48, 592 (1975)
  18. McDonald GC, Hess WM, Rubber Chem. Technol., 50, 842 (1977)
  19. Guth E, Gold O, Phys. Rev., 53, 322 (1938)
  20. Carbon Black Seminar, POSCO Chemical Co., Ltd. (1994)
  21. Hofmann W, "Rubber Technol. H/Bll," Oxford University Press, N.Y. (1989)
  22. ASTM D1765
  23. Kobayashi H, J. Soc. Rubber Ind.(Japan), 58(8), 506 (1985)
  24. Watson JW, Trans. Inst. Rubber Ind., 32, 204 (1956)
  25. Gent AN, "Engineering with Rubber," chap. 3, Hanser Publishers (1992)
  26. Carbon Black Technical Seminar, POSCO Chemical Co., Ltd. (1993)
  27. Eirich FR, "Science and Technology of Rubber," M.L. Studebaker and J.R. Beatty Eds., Academic Press, Inc, Ltd., N.Y. (1978)
  28. Caruthers JM, Cohen RE, MEdalia AI, Rubber Chem. Technol., 49, 1076 (1976)
  29. Medalia AI, Rubber World, 168(5), 49 (1973)
  30. SAE 1085a, "Test for Dynamic Properties of Elastomeric Isolators," 11.38