화학공학소재연구정보센터
Journal of Chemical Thermodynamics, Vol.40, No.1, 96-106, 2008
Densities and derived thermodynamic properties of 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa
Experimental densities were determined in liquid phase for 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa using a vibrating tube densimeter. Water and nitrogen were used as reference fluids for the calibration of the vibrating tube densimeter. The uncertainties of the experimental measurements in the whole range of reported data are estimated to be +/- 0.03 K for temperature, +/- 0.008 MPa for pressure, and +/- 0.20 kg.m(-3) for density. The experimental data are correlated using a short empirical equation of six parameters and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations are reported. Published density data of 1-heptanol are compared with values calculated with the 6-parameter equation using the parameters obtained in this work. The experimental data determined here are also compared with an available correlation for I-heptanol. Densities of 2-heptanol at high pressure were not found in the literature and the data reported here represent the first set of data reported in the literature. Isothermal compressibilities and isobaric thermal expansivity are calculated using the 6-parameter equation for both alcohols within uncertainties estimated to be +/- 0.025 Gpa(-1) and +/- 4 x 10(-7) K-1, respectively. (C) 2007 Elsevier Ltd. All rights reserved.