화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.2, 658-665, February, 2010
Rheological property and curing behavior of poly(amide-co-imide)/multi-walled carbon nanotube composites
E-mail:
Poly(amide-co-imide) (PAI)/multi-walled carbon nanotube (MWCNTs) composites were prepared by using solution mixing with ultrasonication excitation in order to investigate effects of MWCNTs on rheological properties and thermal curing behavior. Steady shear viscosity of the composite showed bell shaped curves with three characteristic patterns: shear thickening, shear thinning, and Newtonian plateau behavior. Both storage modulus and complex viscosity were increased due to higher molecular interaction than that of the pure PAI resin. Especially, hydrogen peroxide treated MWCNT/PAI composites had the highest storage modulus and complex viscosity. Glass transition temperature of the PAI/MWCNT composite was increased with increasing MWCNT content and thermal curing time since the mobility of PAI molecules was reduced as more constraints were generated in PAI molecular chains. It was found that thermal curing conditions of PAI/MWCNT composites are determined by considering effects of weight fraction and surface modification of MWCNTs on internal structure and thermal properties.
  1. Margolis JM, Engineering plastics handbook, McGraw-Hill, New York (2006)
  2. Mehdipour-Ataei S, Hatami M, Eur. Polym. J., 41, 2010 (2005)
  3. Robertson GP, Guiver MD, Yoshikawa M, Brownstein S, Polymer, 45(4), 1111 (2004)
  4. Wang Y, Goh SH, Chung TS, Polymer, 48(10), 2901 (2007)
  5. Liaw DJ, Chang FC, Liu JH, Wang KL, Faghihi K, Huang SH, Polym. Degrad. Stab., 92, 323 (2007)
  6. Liu P, Eur. Polym. J., 41, 2693 (2005)
  7. Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN, Polymer, 47, 4434 (2007)
  8. Datsyuk V, Landois P, Fitremann J, Peigney A, Galibert AM, Soula B, Flahaut E, J. Mater. Chem., 19, 2729 (2009)
  9. Lee SH, Kim MW, Kim SH, Youn JR, Eur. Polym. J., 44, 1620 (2008)
  10. Kim JA, Seong DG, Kang TJ, Youn JR, Carbon, 44, 1898 (2006)
  11. Gao C, He H, Zhou L, Zheng X, Zhang Y, Chem. Mater., 21, 360 (2009)
  12. Yang K, Gu M, Guo Y, Pan X, Mu G, Carbon, 47, 1723 (2009)
  13. Lee SH, Cho E, Jeon SH, Youn JR, Carbon, 45, 2810 (2007)
  14. Kang M, Korean J. Chem. Eng., 25(4), 933 (2008)
  15. Yang CP, Chen RS, Wei CS, Eur. Polym. J., 38, 1721 (2002)
  16. Behniafar H, Haghighat S, Eur. Polym. J., 42, 3236 (2006)
  17. Ranade A, D'Souza NA, Gnade B, Polymer, 43(13), 3759 (2002)
  18. Shi L, Zhao Y, Zhang X, Su H, Tan T, Korean J. Chem. Eng., 25, 1434 (2009)
  19. Buch PR, Mohan DJ, Reddy AVR, Polym. Int., 55, 391 (2006)
  20. Ratna D, Abraham T, Karger-Kocsis J, Macromol. Chem. Phys., 209, 723 (2008)
  21. Abraham TN, Ratna D, Siengchin S, Karger-Kocsis J, J. Appl. Polym. Sci., 110(4), 2094 (2008)
  22. Vail JR, Burris DL, Sawyer WG, Wear, 267, 619 (2009)
  23. Solvay Advanced Polymers Data Sheet. http://www.solvayadvancedpolymers.com
  24. Carbon nano-material technology data sheet. http://www.carbonnano.co.kr/english/english.htm.
  25. Larson RG, The structure and rheology of complex fluids, Oxford University Press, New York (1999)
  26. Dealy JM, Wissbrun KF, Melt rheology and its role in plastics processing, Van Nostrand Reinhold, New York (1990)
  27. Lee SH, Kim JH, Choi SH, Kim SY, Kim KW, Youn JR, Polym. Int., 58, 354 (2009)
  28. Peng N, Chung TS, Lai JY, J. Membr. Sci., 326(2), 608 (2009)
  29. Holmes CB, Cates ME, Fuchs M, Sollich P, J. Rheol., 49(1), 237 (2005)
  30. Shenoy AV, Rheology of filled polymer systems, Kluwer Academic Publisher, Dordrecht (1999)
  31. Gupta RK, Polymer and composite rheology, Marcel Dekker, New York (2000)
  32. Brown E, Jaeger HM, Phys. Rev. Lett., 103, 086001 (2009)
  33. Olejnik R, Liu P, Slobodian P, Zatloukal M, Saha P, AIP Conf. Proc., 1152, 204 (2009)
  34. Salem DR, Structure formation in polymeric fibers, Hanser Publishers, Munich (2001)
  35. Morgan PW, Macromolecules, 10, 1381 (1977)
  36. Choe EW, Kim SN, Macromolecules, 14, 920 (1981)
  37. Cha SI, Kim KT, Lee KH, Mo CB, Jeong YJ, Hong SH, Carbon, 46, 482 (2008)
  38. Xiao KQ, Zhang LC, Zarudi I, Compos. Sci. Technol., 67, 177 (2007)
  39. Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247 (2002)
  40. Chen L, Pang XJ, Yu ZL, Mater. Sci. Eng., 457, 287 (2007)
  41. Seyhan AT, Gojny FH, Tanoglu M, Schulte K, Eur. Polym. J., 43, 2836 (2007)
  42. Fan ZH, Advani SG, J. Rheol., 51(4), 585 (2007)
  43. Lee SH, Cho E, Youn JR, J. Appl. Polym. Sci., 103(6), 3506 (2007)
  44. Yang H, Li B, Wang K, Sun T, Wang X, Zhang Q, Fu Q, Dong X, Han CC, Eur. Polym. J., 44, 113 (2008)
  45. Lee SH, Park JS, Lim BK, Kim SO, J. Appl. Polym. Sci., 110(4), 2345 (2008)
  46. Hatakeyama T, Quinn FX, Thermal analysis: Fundamentals and applications to polymer science, John Wiley & Sons, New York (1999)
  47. Ghosh MK, Mittal KL, Polyimide: Fundamentals and applications, Marcel Dekker, New York (1996)
  48. Chan KC, Chang TC, Polym. J., 30, 897 (1998)
  49. Cai H, Yan F, Xue Q, Mater. Sci. Eng. A, 364, 94 (2004)
  50. Menard KP, Dynamic mechanical analysis: A practical introduction, CRC Press, Boca Raton, FL (1999)
  51. Kang KS, Lee SI, Lee TJ, Narayan R, Shin BY, Korean J. Chem. Eng., 25(3), 599 (2008)
  52. Feng QP, Xie XM, Liu YT, Zhao W, Gao YF, J. Appl. Polym. Sci., 106(4), 2413 (2007)
  53. Vigolo B, Mamane V, Valsaque F, Le TNH, Thabit J, Ghanbaja J, Aranda L, Fort Y, McRaea E, Carbon, 47, 411 (2009)