Journal of Industrial and Engineering Chemistry, Vol.16, No.2, 193-199, March, 2010
Measurement of the hydroxyl radical formation from H2O2, NO3-, and Fe(III) using a continuous flow injection analysis
E-mail:
Production of hydroxyl radical (·OH) is of significant concern in engineered and natural environment. A simple in situ method was developed to measure ·OH formation in UV/H2O2, UV/Fe(III), and UV/NO3- systems using trapping of ·OH by benzoic acid (BA) and measuring fluorescence signals from hydroxylated products of BA. Method development included characterization of ·OH trapping mechanism and measurement of quantum yields (φ.OH) for ·OH. The distribution of OHBA isomers was in the order of o-OHBA > p-OHBA > m-OHBA, although it changed with the H2O2 concentration and light intensity. This supports that ·OH attacks dominantly on the benzene rings. The quantum yields for ·OH formation in the UV/H2O2 process were 1.02 and 0.59 at 254 and 313 nm, which were in good agreement with the literature values, confirming that themethod is suitable for the measurement of ·OH production from UV/H2O2 processes. Using the continuous flow method developed, quantum yields for ·OH in UV/H2O2, UV/Fe(III), and UV/NO3- systems were measured varying the initial concentration of ·OH precursors. The φ.OH values increased with increasing concentrations of H2O2, Fe(III), and NO3- and approached constant values as the concentration increased. The φ.OH values were 0.009 for H2O2 at 365 nm, showing that ·OH production is not negligible at such high wavelength.The φ.OH values during the photolysis of Fe(OH)2+ (pH 3.0) and Fe(OH)2+ (pH 6.0) at 254 nm were 0.34 and 0.037, respectively. The φ.OH values for NO3- approached a constant value of 0.045 at 254 nm at the initial concentration of 10 mM
- Legrini O, Oliveros E, Braun AM, Chem. Rev., 93, 671 (1993)
- Hislop KA, Bolton JR, Environ. Sci. Technol., 33, 3119 (1999)
- Rosenfeldt EJ, Linden KG, Environ. Sci. Technol., 41, 2548 (2007)
- Sarathy SR, Mohseni M, Environ. Sci. Technol., 41, 8315 (2007)
- Rosenfeldt EJ, Linden KG, Canonica S, von Gunten U, Water Res., 40, 3695 (2006)
- Warneck P, Wurzinger C, J. Phys. Chem., 92, 6278 (1988)
- Benkelberg HJ, Warneck P, J. Phys. Chem., 99(14), 5214 (1995)
- Lee C, Yoon J, Chemosphere, 57, 1449 (2004)
- Baxendale JH, Wilson JA, Trans. Faraday Soc., 53, 344 (1957)
- Buxton GV, Greenstock CL, Helman WP, Ross AB, J. Phys. Chem. Ref. Data, 17 (1988)
- Zhou X, Mopper K, Mar. Chem., 30, 71 (1990)
- Armstrong WA, Black BA, Grant DW, J. Phys. Chem., 64, 1415 (1960)
- Klein GW, Bhatla K, Madhavan V, Schuler RH, J. Phys. Chem., 79, 1767 (1975)
- Grootveld M, Halliwell B, J. Biochem., 237, 499 (1986)
- Ishibashi KI, Fujishima A, Watanabe T, Hashimoto K, J. Photochem. Photobiol. A, 134, 139 (2000)
- Gao JJ, Xu KH, Hu JX, Huang H, Tang B, J. Agric. Food Chem., 54, 7968 (2006)
- Maskos Z, Rush JD, Koppenol WH, Free Radical Biol. Med., 8, 153 (1990)
- Lindsey ME, Tarr MA, Chemosphere, 41, 409 (2000)
- Lindsey ME, Tarr MA, Environ. Sci. Technol., 34, 444 (2000)
- Elovitz MS, von Gunten U, Ozone: Sci. Eng., 21, 239 (1999)
- Matthews RW, Sangster DF, J. Phys. Chem., 69, 1938 (1965)
- Kwon BG, J. Photochem. Photobiol. A, 199, 112 (2008)
- Oha WC, Zhang FJ, Chen ML, Lee YM, Ko WB, J. Ind. Eng. Chem., 15(2), 190 (2009)
- Shon HK, Cho DL, Na SH, Kim JB, Park HJ, Kim JH, J. Ind. Eng. Chem., 15(4), 476 (2009)
- Oturan MA, Pinson J, J. Phys. Chem., 99(38), 13948 (1995)
- Zepp RG, Hoigne J, Bader H, Environ. Sci. Technol., 21, 443 (1987)
- Sun LZ, Bolton JR, J. Phys. Chem., 100(10), 4127 (1996)
- Dzengel J, Theurich J, Bahnemann D, Environ. Sci. Technol., 33, 294 (1999)
- Hunt JP, Taube H, J. Am. Chem. Soc., 74, 5999 (1952)
- Gibson JF, Ingram DJE, Symons MCR, Townsend MG, Trans. Faraday Soc., 53, 914 (1957)
- Calvert JG, Pitts Jr. JN, Photochemistry, 2nd ed., John Wiley and Sons, Inc., New York, 1967, p. 780.
- USEPA, Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC). Method 8315A (SW-846), Revision 1, Office of Solid Waste, Washington, DC, USA, 1996.
- Kwon BG, Lee JH, Anal. Chem., 76, 6359 (2004)
- Zafiriou OC, Bonneau R, Photochem. Photobiol., 45, 723 (1987)
- Clark GD, Hungerford JM, Christian GD, Anal. Chem., 61, 973 (1989)
- Martine GB, Cho HK, Meyerhoff ME, Anal. Chem., 56, 2612 (1984)
- Dong S, Dasgupta PK, Environ. Sci. Technol., 21, 581 (1987)
- Lee JH, Tang IN, Weinstein-Lioyd JB, Anal. Chem., 62, 2381 (1990)
- Hatchard CG, Parker CA, Proc. R. Soc. Lond., Ser. A, 235, 518 (1956)
- APHA, Standard Methods for the Examination of Water and Wastewater, 3500-Fe Iron, 20th ed., American Public Health Association, Washington, DC, USA, 1998
- Bielski BHJ, Cabelli DE, Arudi RL, Ross AB, J. Phys. Chem. Ref. Data, 14, 1041 (1985)
- Glaze WH, Lay Y, Kang JW, Ind. Eng. Chem. Res., 34(7), 2314 (1995)
- Anbar M, Meyerstein D, Neta P, J. Phys. Chem., 70, 2660 (1966)
- Eberhardt MK, Yoshida M, J. Phys. Chem., 77, 589 (1973)
- Asmus KD, Mockel H, Henglein A, J. Phys. Chem., 77, 1218 (1973)
- Dainton FS, J. Am. Chem. Soc., 78, 1278 (1956)
- Vione D, Maurino V, Minero C, Pelizzetti E, Environ. Sci. Technol., 36, 669 (2002)
- Pozdnyakov IP, Glebov EM, Plyusnin VF, Grivin VP, Ivanov YV, Vorobyev DY, Bazhin NM, Pure Appl. Chem., 72, 2187 (2000)
- Kiwi J, Lopez A, Nadtochenko V, Environ. Sci. Technol., 34, 2162 (2000)
- Vaughan P, Blough NV, Environ. Sci. Technol., 32, 2947 (1998)