Korea-Australia Rheology Journal, Vol.22, No.2, 129-139, June, 2010
Numerical study on turbulent blood flow in a stenosed artery bifurcation under periodic body acceleration using a modified k-ε model
E-mail:
This article describes the numerical investigation of turbulent blood flow in the stenosed artery bifurcation under periodic acceleration of the human body. Numerical analyses for turbulent blood flow were performed for six simulation cases with different magnitude of periodic accelerations using a modified k-ε turbulence model which is considering drag reduction of non-Newtonian fluid. The blood was considered to be a non-Newtonian fluid which is based on the power-law viscosity model. In order to validate the modified k-ε model, numerical simulations were compared with laminar flow, the standard k-ε model and the Malin’s turbulence model for power-law fluid. As results, laminar flow showed under predictions of blood velocity and wall shear stress, on the other hand, standard k-ε model over estimates. The modified k-ε model represents intermediate characteristics between laminar and standard k-ε model, and the modified k-ε model show good agreements with Malin’s verified power law model. Moreover, the computing time and computer resource of the modified k-ε model are reduced about one third than low Reynolds number model including Malin’s model.
Keywords:turbulent blood flow;k-ε turbulence model;periodic body acceleration;drag reduction;artery bifurcation
- Berger SA, Jou LD, Annu Rev Fluid Mech., 32, 347 (2000)
- Biro GP, Cardiovascular Res., 16, 194 (1982)
- Bradly JG, Davis KA, Am Fam Physician., 68, 2393 (2003)
- Caro CG, Schroter TJ, Seed WA, J. Biomech., 29, 899 (1996)
- Chakravarty S, Mandal PK, Math. Comput. Model., 24, 43 (1996)
- Chaturani P, Palanisamy V, Biorheology, 27, 619 (1990)
- Chaturani P, Palanisamy V, Int. J. Eng. Sci., 29, 113 (1991)
- Chaturani P, Isaac ASA, Wassf, Int. J. Eng. Sci., 33, 1807 (1995)
- Dodge DW, Metzner AB, AIChE J., 5, 189 (1959)
- El-Shahed M, Appl. Math. Comput., 138, 479 (2003)
- Escudier MP, Presti F, Smith S, J. Non-Newton. Fluid Mech., 81(3), 197 (1999)
- Fry DL, Circ. Res., 22, 165 (1968)
- Glagov S, Zarins C, Giddens DP, Ku DN, Arch. Pathol. Lab. Mec., 112, 1018 (1988)
- Hiatt EP, Mecchan JP, Galambos, Reports on Human Acceleration, NASNRC Washington DC, publication 901 (1961)
- Hooks LE, Nerem RM, Benson TJ, Int. J. Eng. Sci., 10, 989 (1972)
- Hoyt JW, J. Basic Eng., 94, 258 (1972)
- Ku DN, Giddens DP, Zarins CK, Glagov S, Arteriosclerosis., 5, 293 (1985)
- Lam CKG, Bremhorst K, J. Fluids Eng., 103, 456 (1981)
- Lumley JL, J. Polymer Science., 7, 263 (1973)
- Malek AM, Alper SL, Izumo S, JAMA, 282, 2035 (1999)
- Malin MR, Int. Comm. Heat Mass Transfer, 24, 977 (1997)
- Malin MR, The PHOENICS Journal of Computational Fluid Dynamics and its Applications, 12, 351 (1999)
- Mandal PK, Chakravarthy S, Mandal A, Amin N, Appl. Math. Comput, 189, 766 (2007)
- Meyer WA, AIChE J., 12, 522 (1966)
- Mirsa JC, Sahu BK, Comput. Math. Appl., 16, 993 (1988)
- Nagarani P, Sarojamma G, Korea-Aust. Rheol. J., 20(4), 189 (2008)
- Pinho FT, J. Non-Newton. Fluid Mech., 114(2-3), 149 (2003)
- Ptasinski PK, Nieuwstadt FTM, Van Den Brule HHAA, Hulsen MA, Flow, Turbul. Combust., 66, 159 (2001)
- Ro KC, Ryou HS, Korea-Aust. Rheol. J., 21(3), 175 (2009)
- Ro KC, Ryou HS, Eur. J. Mech. B. Fluids, submitted. (2010)
- Sud VK, Sekhon GS, Bull Math. Biol., 47, 35 (1985)
- Sud VK, Sekhon GS, J. Biomech., 19, 929 (1986)
- Tang D, Yang C, Kobayashi S, Zheng J, Vito RP, J. Biomed. Eng., 31, 1182 (2003)
- Toms BA, Proc. First Int. Cong. Rheol., 2, 135 (1976)
- Virk PS, AIChE J., 21, 625 (1975)
- Yoo SS, Suk SH, Roh HW, J. Mech. Sci. Technol., 10, 223 (1996)