화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.6, 659-663, December, 2010
광합성 미세조류 Nannochloropsis oculata의 최적배양 조건
Optimal Culture Conditions for Photosynthetic Microalgae Nannochloropsis oculata
E-mail:
초록
미세조류는 전 세계 바다에 분포하고 있으며 일부 종들은 인간의 식품에 이용되어 왔다. 특히, 광합성 미세조류 Nannochloropsis oculata는 영양적 가치가 우수하여 관심을 받고 있다. 본 연구에서는 광합성 미세조류 Nannochloropsis oculata의 고농도배양을 위한 배양온도, 초기 pH, 배양액 선정, 인공해수 농도, 배지농도, CO2영향 등 최적조건을 확립하고자 하였다. 그 결과, 3%의 인공해수, 초기 pH 8.5, 배양온도 25 ℃가 최적 배양조건으로 판별되었다. 미세조류에 CO2를 공급하지 않았을 때에는 건조 균체량이 0.76 g/L이었지만, 5% CO2 공급 이후 1.50 g/L로 높은 성장률을 보였다. 클로로필 생합성은 미세조류 성장과 깊은 연관이 있는 것으로 판명되었다.
Microalgae has been seen all over the seawater and several species are used for human food. Specially, Nannochloropsis oculata, a photosynthetic microalgae, has been focused for a vast array of valuable nutritious compounds. In order to find high mass Nannochloropsis oculata culture conditions, some of important growth factors of pH, temperature, culture media, and CO2 effect were tested. The optimal growth condition was found to be as follows : 3% artificial seawater, initial pH 8.5, and temperature 25 ℃. The alga mass and chlorophyll content were dramatically increased by applying 5% flue CO2 gas (1.50 g/L algae in a continuous CO2 flue; 0.76 g/L alga without CO2). It was shown that the chlorophyll biosynthesis was also closely associated with alga growth.
  1. Kim JH, Choi CM, Kim WI, Lee JS, Jung GB, Shin JD, Sung JS, Lee JT, Yun SG, Korean Journal of Environmental Agriculture., 26, 7 (2007)
  2. Joo DS, Jung CK, Lee CH, Cho SY, J. Korean Fish. Soc., 33, 475 (2000)
  3. Kim SK, Baek HC, Byun HG, Kang OJ, Kim JB, J. Korean Fish. Soc., 34, 260 (2001)
  4. Park EK, Seo MW, Lee CG, Kor. J. Appl. Microbiol. Biotechnol., 29, 227 (2001)
  5. Vonshak A, Biotechnol. Adv., 8, 709 (1990)
  6. Ogawa T, Terui G, J. Ferment. Technol., 48, 361 (1970)
  7. Kim YS, Chemical J., 8, 35 (1995)
  8. Guillard RRL, Ryther JH, Grand. Can. J. Microbiol., 3, 229 (1962)
  9. Krienitz L, Hepperle D, Stich HB, Weiler W, Phycologia., 39, 219 (2000)
  10. http://www.reed-mariculture.com
  11. Hwang DH, Carroll AE, Am. J. Clin. Nutr., 33, 590 (1980)
  12. Lee MY, Shin HW, J. Appl. Phycol., 15, 13 (2003)
  13. Min BS, MS disseretation, Dept. of Genetic Engineering, Graduate school, Soonchunhyang University, 91 (2004)
  14. Lee MY, Min BS, Chang CS, Jin ES, Marine Biotechnol., 8, 238 (2006)
  15. Moshe W, Assaf S, Shoshana M, Biosci. Biotechnol. Biochem., 67, 2266 (2003)
  16. Borowitzka MA, J. Appl. Phycol., 4, 267 (1992)
  17. Oh HM, Kim JS, Lee SJ, Kor. J. of Environ. Biol., 16, 291 (1998)
  18. Kim TH, Sung KD, Lee JS, Lee JY, Oh SJ, Lee HY, Kor. J. Appl. Microbiol. Biotechnol., 25, 237 (1997)
  19. Carlos J, Belen RC, Diego L, Xavier N, Aquaculture., 217, 179 (2003)
  20. Carlos J, Belen RC, Xavier N, Aquaculture., 221, 331 (2003)
  21. Lee CG, Korea Society of Biotechnology and Bioengineering Conference and Bio-Venture Fair, 41 (2000)
  22. Kye YS, Jeong K, Chung WY, Appl. Chem. Eng., 21(1), 1 (2010)
  23. Kim YM, Kim MR, Kwon TH, Ha JM, Lee JH, J. Korean Ind. Eng. Chem., 20(3), 285 (2009)
  24. Joo DS, Cho MG, Buchholz R, Lee EH, J. Korean Fish.Soc., 31, 409 (1998)
  25. Joo DS, Jung CK, Lee CH, Cho SY, J. Korean Fish. Soc., 33, 475 (2000)
  26. Kim YS, Park HI, Kim DK, Park DW, Korean J. Biotechnol. Bioeng., 18, 277 (2003)
  27. Mchugh DJ, FAO Fish. Tech. Pap., 441, 105 (2003)
  28. Krienitz L, Hepperle D, Stich HB, Weiler W, Phycologia., 39, 219 (2000)
  29. Cood GA, Okabe K, Stewart WP, Arch. Microbiol., 124, 149 (1980)
  30. Chen PC, Ph. D. Dissertation, Gottingen Univ., Germany (1979)