Energy, Vol.35, No.2, 729-739, 2010
A methodology of computation, design and optimization of solar Stirling power plant using hydrogen/oxygen fuel cells
The objective of this paper is to develop a methodology to determine how many houses could be fueled from the solar energy captured by a number of solar Stirling modules (with a fixed dish area per module) and also to determine the minimum necessary area of the fuel cell to ensure the amount of power needed to meet daily energy use requirements. The detailed method includes the effect of the fuel cell efficiency function on the power consumption of the user. Experimental data from our laboratory are used to determine the fuel cell efficiency as a function of the electric current density for a specific power demand. As an illustrative example, the analysis is applied to a residential area having a specific electrical demand. Using the developed method, the number of houses that could be fueled directly by the stored hydrogen is determined, and also the minim fuel cell area required. (C) 2009 Elsevier Ltd. All rights reserved.